MIPS R4000 Microprocessor
User’s Manual

Second Edition

Joe Heinrich

(0 1994 MIPS Technologies, Inc. All Rights Reserved.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013 and/or in similar or successor
clauses in the FAR, or in the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is MIPS Technologies, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

RISCompiler, RISC/0s, R2000, R6000, R4000, and R4400 are trademarks of
MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of
MIPS Technologies, Inc.

IBM 370 is a registered trademark of International Business Machines.
VAX is a registered trademark of Digital EQuipment Corporation.
iIAPX is a registered trademark of Intel Corporation.

MC68000 is a registered trademark of Motorola Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd.

MIPS Technologies, Inc.
2011 North Shoreline
Mountain View, California 94039-7311

Acknowledgments for the First Edition

First of all, special thanks go to Duk Chun for his patient help in supplying and
verifying the content of this manual; that this manual is technically correct is, in a
very large part, directly attributable to him.

Thanks also to the following people for supplying portions of this book: Shabbir
Latif, for, among other things, the exception handler flow charts, the description
of the output buffer edge-control logic, and the interrupts; once again, Duk Chun,
for his paper on R4000 processor synchronization support; Paul Ries, for
confirming the accuracy of sections describing the memory management and the
caches; John Mashey, for verifying the R4000 processor actually does employ the
64-bit architecture; Dave Ditzel, for raising the issue in the first place; and Mike
Gupta, for substantiating various aspects of the errata. Finally, thanks to Ed
Reidenbach for supplying a large portion of the parity and ECC sections of this
manual, and Michael Ngo for checking their accuracy.

Thanks also to the following folks for their technical assistance: Andy Keane,
Keith Garrett, Viggy Mokkarala, Charles Price, Ali Moayedian, George Hsieh,
Peter Fu, Stephen Przybylski, Michael Woodacre, and Earl Killian. Also to be
thanked are the people at fvn@world.std.com: Bill Tuthill, Barry Shein, Bob
Devine, and Alan Marr, for helping place RISC in a pecuniary perspective. Also,
thanks to the following people at the mystery_train@swimz2birds news group: toma,
dan_sears, jharris@garnet, tut@cairo (again), and elvis@dalkey(mateo_b). Their night-
for-day netversations, fueled by caffeine, concerning the viability of the
cyberpsykinetic compute-core model helped form an important basis of this book.

On the editorial front, thanks once again to Ms. Robin Cowan, of the Consortium
of Editorial Arts for her labors in editing this manual. Thanks to Evelyn Spire for
slaving over that bottomless black well we refer to as an “Index.” Thanks also,
once again, to Karen Gettman, and Lisa larkowski at Prentice-Hall for their help.

On the artistic side, thanks to Jeanne Simonian, of the Creative department here
at Silicon Graphics, for the book cover design; and thanks to Pam Flanders for
providing MarCom tactical support.

Have we missed anyone? If so, here is where we apologize for doing so.

Joe Heinrich
April 1, 1993
Mt. View, California

MIPS R4000 Microprocessor User's Manual iii

MIPS R4000 Microprocessor User's Manual

Acknowledgments for the Second Edition

Thanks go to Shabbir Latif, from whose errata the major part of this second
edition is derived. Thanks also to Charlie Price for, among other things, making
available his revision of the ISA.

On the production side, thanks to Kay Maitz, Beth Fraker, Molly Castor, Lynnea
Humpbhries, and Claudia Lohnes for their assistance at the center of the hurricane.

Joe Heinrich
joeh@sgi.com

April 1, 1994

Mt. View, California

MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual

Vi

Preface

This book describes the MIPS R4000 and R4400 family of RISC
microprocessors (also referred to in this book as processor).

Overview of the Contents

Chapter 1 is a discussion (including the historical context) of RISC
development in general, and the R4000 microprocessor in particular.

Chapter 2 is an overview of the CPU instruction set.

Chapter 3 describes the operation of the R4000 instruction execution
pipeline, including the basic operation of the pipeline and
interruptions that are caused by interlocks and exceptions.

Chapter 4 describes the memory management system including
address mapping and address spaces, virtual memory, the translation
lookaside buffer (TLB), and the System Control Processor (CPO).

Chapter 5 describes the exception processing resources of R4000
processor. It includes an overview of the CPU exception handling
process and describes the format and use of each CPU exception
handling register.

MIPS R4000 Microprocessor User's Manual vii

Preface

Chapter 6 describes the Floating-Point Unit (FPU), a coprocessor for
the CPU that extends the CPU instruction set to perform floating-
point arithmetic operations. This chapter lists the FPU registers and
instructions.

Chapter 7 describes the FPU exception processing.

Chapter 8 describes the signals that pass between the R4000 processor
and other components in a system. The signals discussed include the
System interface, the Clock/Control interface, the Secondary Cache
interface, the Interrupt interface, the Initialization interface, and the
JTAG interface.

Chapter 9 describes in more detail the Initialization interface, which
includes the boot modes for the processor, as well as system resets.

Chapter 10 describes the clocks used in the R4000 processor, as well as
the processor status reporting mechanism.

Chapter 11 discusses cache memory, including the operation of the
primary and secondary caches, and cache coherency in a
multiprocessor system.

Chapter 12 describes the System interface, which allows the processor
access to external resources such as memory and input/output (1/0).
It also allows an external agent access to the internal resources of the
processor, such as the secondary cache.

Chapter 13 describes the Secondary Cache interface, including read
and write cycle timing. This chapter also discusses the interface buses
and signals.

Chapter 14 describes the Joint Test Action Group (JTAG) interface.
The JTAG boundary scan mechanism tests the interconnections
between the R4000 processor, the printed circuit board to which it is
mounted, and other components on the board.

Chapter 15 describes the single nonmaskable processor interrupt,
along with the six hardware and two software processor interrupts.

Chapter 16 describes the error checking and correcting (ECC)
mechanisms of the R4000 processor.

viii

MIPS R4000 Microprocessor User's Manual

Preface

Appendix A describes the R4000 CPU instructions, in both 32- and 64-
bit modes. The instruction list is given in alphabetical order.

Appendix B describes the R4000 FPU instructions, listed
alphabetically.

Appendix C describes sub-block ordering, a nonsequential method of
retrieving data.

Appendix D describes the output buffer and the Ai/At control
mechanism.

Appendix E describes the passive components that make up the
phase-locked loop (PLL).

Appendix F describes Coprocessor 0 hazards.

Appendix G describes the R4000 pinout.

A Note on Style

A brief note on some of the stylistic conventions used in this book: bits,
fields, and registers of interest from a software perspective are
italicized (such as Config register); signal names of more importance
from a hardware point of view are rendered in bold (such as Reset*).

A range of bits uses a colon as a separator; for instance, (15:0)
represents the 16-bit range that runs from bit 0, inclusive, through bit
15. (In some places an ellipsis may used in place of the colon for
visibility: (15...0).)

MIPS R4000 Microprocessor User's Manual ix

Preface

X MIPS R4000 Microprocessor User's Manual

Preface to the Second Edition

Changes From the First Edition

The second edition of this book incorporates certain low-level changes
and technical additions, but retains a substantive identity with the
original version.

Changes from the first edition are indicated by left-margin vertical
rules.

Getting MIPS Documents On-Line

MIPS documents (including an electronic version of the errata) are
available on-line, through the file transport protocol (FTP). To
retrieve them, follow the steps below. The text you are to type is
shown in Courier Bold font; the computer’s responses are in
shown in Courier Regular font.

1. First, place yourself in the directory on your system within which
you want to store the retrieved files. Do this by typing:

cd <directory_you_want_file_to_be_in>

2. Access the MIPS document server, sgigate, through FTP by
typing:
ftp sgigate.sgi.com

3. The server tells you when you are connected for FTP by
responding:

Connected to sgigate.sgi.com.

MIPS R4000 Microprocessor User's Manual Xi

Preface

10.

11.

12.

13.

Next (after some announcements) the server asks you to log in by
requesting a name and then a password.

Name (sgigate.sgi.com:<login_name>)

Login by typing anonymous for your name and your electronic
mail address for your password.

Name (sgigate.sgi.com:<login_name>) . anonymous

331 Guest login ok, type your name as
password.

Password: your_email _address

The system indicates you have successfully logged in by
supplying an FTP prompt:

ftp>
Go to the pub/doc directory by typing:
ftp> cd pub/doc

You can take a look at the contents of the doc directory by listing
them:

ftp> Is

You will find several R4000-related subdirectories, such as R4200,
R4400, and R4600. When you find the subdirectory you want, cd
into that subdirectory and retrieve the file you want by typing:

get <filename>
This copies the file from sgigate back to your system.

When you have retrieved the files you want, exit from ftp by
typing:
ftp> quit

If the file was encoded for transmission, you must decode it, after
retrieval, by typing:

uudecode <filename>

If the file was compressed for transmission, you must uncompress
it, after retrieval, by typing:

uncompress <filename>
If you tarred the file, type:
tar xvof <filename>

Xii

MIPS R4000 Microprocessor User's Manual

Table of Contents

Preface
OVErVIieW Of the CONTENES........ociecie et Vii
ANOLE ON SEYIE ..o iX

Preface to the Second Edition

Changes From the First EAition ... xi
Getting MIPS Documents ON-LiNE.........cccooviiiiieiine e xi

MIPS R4000 Microprocessor User's Manual xiii

Table of Contents

1
Introduction
Benefits Of RISC DESIONc..ouiiiiiiirieisiese e 2
Shorter DeSIgN CYCIEoivvieie e 3
Effective Utilization of Chip Area ... 3
User (Programmer) BenefitS ... 3
Advanced Semiconductor TeChNoIOGIesccccvvevererereicee e 3
Optimizing COMPIIEIS. ..o e 4
MIPS RISCompiler Language SUITE ..o 5
CoMPALIDIHILY (.o e ene 6
Processor GeNeral FEATUIES. ..ot 6
R4000 Processor CoONfIQUIAtiONScceoieriiiniiniciieeecseese e 7
R4400 Processor ENNANCEMENTScocoiiiieniinieiiecsecsiese e e 7
RADD0 PrOCESSON ...ttt stttk sttt sb et sb e sre et et e b b e b s 9
B4-DIt AFCHITECTUIE . .oviiiiiee e e 9
Superpipeling ArchiteCtUIEcocveiveiee e 11
SYSIEM INTEITACE ..o 11
CPU REQISTEr OVEIVIBWecvieiiiiiiisieisiee ettt 12
CPU INStruction SEt OVEIVIEW.........cceiiiiiiiieeese e 14
Data Formats and AdAreSSiNgcccveveiveieiieie e 24
CopProcesSOrs (CPO-CP2)ccoiiiiirieiieisenee et 27
System Control Coprocessor, CPO.........cccvvviiiienese e 27
Floating-Point Unit (FPU), CPL ..o 30
Memory Management System (MMU) ... 31
The Translation Lookaside BUuffer (TLB).......cccccoevvievivvenenereieee e 31
OPErating MOESoviiiiiie et 32
Cache Memory HIErarcChy ... 32
Primary CaChesccvoiiiiiiec e ene 33
Secondary Cache INtErfacecccccvvviiii i 33

Xiv MIPS R4000 Microprocessor User's Manual

Table of Contents

2
CPU Instruction Set Summary

CPU INSIrUCtiON FOIMALSoiiiiiiiiiiieiecieeee et sne 36
Load and Store INSIFUCTIONSccoovieiiieiieie e 37
Scheduling a Load Delay SIOt..........ccccooeiieiiiieieceerecee e 37
DefiNiNg ACCESS TYPES ..ottt 37
Computational INSTrUCLIONS.........cc.coviiiiiiiies e e 39
B4-DIt OPEIAtIONS ... 39

Cycle Timing for Multiply and Divide INStructions............cc.cccevevriinnne. 40

Jump and Branch INSTrUCLIONSc.covviiiiinie e 41
Overview of JUMP INSIFUCTIONSoiiiiiiiiicie e 41
Overview of Branch INStrUCLIONScocoviiiieiiiee e 41
Special INSIIUCLIONSciiieie e e e 42
EXCePtioN INSTUCHIONS......c.oiviiiiiieiieeee s 42
COoProcesSOr INSTFUCTIONScc.eiiuiiiiisieiieee e 42

3
The CPU Pipeline

CPU Pipeling OPEIatioNccccoiiiriirieiieieieeeieiese sttt sne s 44
CPU PiPEliNg STAGES. ... ccvi ittt 45
BranCh DEIAYccocviiiiiiie ettt n e e ene s 48
(o> To [0 =1 - Y USSR 48
Interlock and Exception Handling.........cccoeiiiiiinninencceseseeseese e 49
EXCeption CONAITIONSccceiviiieiiieiieeees e 52
STAIl CONAILIONS ... e 53
SHP CONAITIONS ...t 53
EXEEINAL STALIS ... 53
Interlock and EXCeption TIMINGccccoeiiiiiiiiniie e 53
Backing Up the PIPeline ...t 54
Aborting an Instruction Subsequent to an Interlock..........ccccooveivvivvninnn. 55
Pipelining the Exception Handlingccocooiiiiiiiniiiiceeee 56
SPECIAI CASES ...ttt 58
Performance ConSiderations..........cccoeriiiiineineenceneese e 58
Correctness CONSIAEIAtIONS...........ccoiiiiireiine e 58
R4400 Processor Uncached Store BUFFer ... 59

MIPS R4000 Microprocessor User's Manual XV

Table of Contents

4
Memory Management
Translation Lookaside BUFfer (TLB) ... 62
HiItS AN IMISSES ...ttt ettt 62
MUILIPIE MALCNES ... 62
AAAIESS SPACESceeviiiteiite ettt b bbbt b b 63
Virtual AdAress SPACE........coveveeereesiese e ne e e e e e sreers 63
Physical AAAIress SPACE........cooeiiriiiiiiieieet e 64
Virtual-to-Physical Address Translation ... 64
32-bit Mode Address Translation ... 65
64-bit Mode Address Translation ... 66
OPErating MOOES ..o 67
O 11=T 1Y [oTo S @] o =T =11 o] o |- USRS 67
Supervisor Mode OPEratioNS.........ccciiiiirererenee e 69
Kernel Mode OPErations ..o 73
System CONtrol COPIrOCESSONccvvierieiiieieeeeetese e ste e e se e e ssese e e eseeresseanens 80
FOrmat Of @ TLB ENEIY ..ottt 81
CPO REGISTEIS ...ttt 84
FaTe [y To TES]] (0 USSP 85
RaNAOM REGISLEN (L) ...veiveieeiieiieiiieie sttt 86
EntryLo0 (2), and EntryLol (3) REJISIErS.......ccoveireireiieisieesieeseeeieae 87
PageMask REGISTEN (5)...cvivicieieieeeesese s e ste e e e e resnesneas 87
RV LT W R CeTo T =] g () RSP SSSSR 88
EntryHi Register (CP0 RegiSter 10).......ccccouireineinieinieesicesieesieesreseene e 89
Processor Revision Identifier (PRId) Register (15)......ccccocevvevviviivicvninnnnnnns 89
(070 o) o R {=To 1Y 1= (111 ISR 90
Load Linked Address (LLAdAr) RegiSter (17)ccocoovevnennennenneneieee 93
Cache Tag Registers [TagLo (28) and TagHi (29)]ccceovevveivvivevvcvvivsnsnnn, 93
Virtual-to-Physical Address Translation Process..........cccccovvvivevviiiennevennnenn, 95
TLB IMIISSES ..ttt sttt sttt ettt bbbt st ettt e seeneeneene s 97
TLB INSEFUCLIONS ...ttt e e 97

XVi MIPS R4000 Microprocessor User's Manual

Table of Contents

5
CPU Exception Processing

How Exception Processing WOIKS..........coviiiiiniiniccese s 100
Exception Processing REQISErScovcviiiiriiie e se e snens 101
CONEXE REGISTEN (4) .ooveieeeie ettt sreanaen 102
Bad Virtual Address Register (BadVAdAI) (8)......cccovvviriiniinciicirenn 103
L0101 L R =T o [y (=1 g () SRS 103
CompPare REGISTEN (11) ...ccoiererieieieieieeee et 104
StAtUS REGISTEN (12)...c.eiviiiiiieiiieeiste e 105
Status Register FOrMaALcccov i 105
Status Register Modes and AcCCeSS States..........ccvvvevvvveneiiene e, 109
StAtUS REQISTEN RESELviiiiiiciiieieece s 110

(O T Tl o (=0 151 (=Tl (1 TSRS 110
Exception Program Counter (EPC) Register (14)ccccoeveieiiinicnininenenes 112
WatchLo (18) and WatchHi (19) REQISTerscccoviireiriiiieencneeeeiee 113
XContext REGISTEr (20)...ccuvieieiierieieieieeiees e 114
Error Checking and Correcting (ECC) Register (26).........cccocviveevivevniineinninens 115
Cache Error (CacheErr) RegiSter (27)cooveriiriireirieinieses e 116
Error Exception Program Counter (Error EPC) Register (30)......cccccocvvvruenen. 118
ProCessSor EXCEPTIONSoouiiiiiiieieieeee ettt 119
EXCEPLION TYPES ..ottt 119
ReSEt EXCEPLION PrOCESS......cvcieeeeeiece st se st e e resnesnea 120
Cache Error EXCEPLION PrOCESSccoiiiieiinieiie et 120

Soft Reset and NMI EXCEPLION PrOCESS.........covvviiriiiniiiiiisiiieenecseeeneees 121
General EXCEPLioN PrOCESSccvviviviiresesesesesiesiesieseeseesesessesessesesnesnesses 121
EXCeption VECtOr LOCATIONSccueveiiiiiieiiierestese e 122
Priority Of EXCEPTIONSoviviiiicicc s 123
=l Sht(ed=1 o)1 o] o ISR 124
SOFt RESET EXCEPLION ...t 125
AdAress Error EXCEPLION........ccccviiiiiiiiie ettt 127
TLB EXCEPLIONS .. .ccviiiiiiiieestiie et st e ettt st sn e e naenaenesneanens 128
TLB Refill EXCEPLION....ccueiiiiiiiiiieeeee s 129
TLB INvalid EXCEPLION......ciiiiiiiiiiiiie e 130
TLB Modified EXCEPLION ... 131
Cache Error EXCEPLION.ccoiiiiiieieieeeiees et 132
Virtual Coherency EXCEPLION ..ot 133
O = o] T (ol=T o] £ o o SRS 134
Integer OVErflow EXCEPLIONcccoviiiiiiiiiinie e 135

MIPS R4000 Microprocessor User's Manual Xvii

Table of Contents

Trap EXCEPLION ..ottt ene 136
System Call EXCEPLIONcciiiiiiiiiie et 137
Breakpoint EXCEPLIONccvivieieciieeeeeee et 138
Reserved INStruction EXCEPLIONcccviiiiiiiiicse e 139
Coprocessor Unusable EXCEPTION ... 140
Floating-PoiNt EXCEPLION. ..o 141
WaALCH EXCEPLION ..o 142
INTEFTUPT EXCEPLION. ...ttt 143
Exception Handling and Servicing FIowchartsccccoceoeviiiieiciccn i 144

xviii MIPS R4000 Microprocessor User's Manual

Table of Contents

6
Floating-Point Unit

OVEBIVIBW ..ttt sttt s st b et e bt b e be st sae st e beste e eneeneeneeneas 152
FPU FRATUIESeeiti ettt bttt s e ane 153
FPU Programming MOEl............ccoooieiiiiiieeecee e 154
Floating-Point General RegiSters (FGRS).......ccocoviiiiiieniencieiiecseciens 154
Floating-POINt REGISTEISccviiiieiecceeeees et 156
Floating-Point Control REQISIErSccccvciieieiieecc e 157
Implementation and Revision Register, (FCRO)ccccooerieniennienseneee 158
Control/Status Register (FCR31)......ccccovviviiviivnie e 159
Accessing the Control/Status RegiSter........oovvvviiiiii i 160
IEEE StaNdard 754c.ccouiiiiiiiisesieesiee e 161
Control/Status RegiSter FS Bit.........ccoovivviviinieieierene e 161
Control/Status Register Condition Bit...........cccccevvveviniciiieecc e, 161
Control/Status Register Cause, Flag, and Enable Fields..........c.ccccoeeee. 161
Control/Status Register Rounding Mode Control Bits.........cc.cccccoevvevnnnnee. 163
Floating-PoiNt FOrMALScccoiiiiiee e 164
Binary Fixed-POint FOrMAL...........ccoviiiiiiiieee e 166
Floating-Point INStruction Set OVENVIEWcccccvveveiereeieneseseeese e sese e 167
Floating-Point Load, Store, and Move INStructions..........c.cccccccevviveiveiennnns 169
Transfers Between FPU and MEMOIY ..ot 169
Transfers Between FPU and CPU..........cccoviiiiiinniieeese e 169
Load Delay and Hardware INterloCKScccooveviiieie i, 169
Data ALGNMENT......ooiiii e 170
ENIANNESS ... bbb 170
Floating-Point Conversion INSTrUCLIONS...........cccccveiiiieie e 170
Floating-Point Computational INStructionscccceoveniiniinencciecen 170
Branch on FPU Condition INStrUCLIONS..........ccccovvviiiiiiiieseciecsiecins 170
Floating-Point Compare OPErationsS............covrirerinenenienieieee e 171
FPU Instruction Pipeling OVEIVIEW...........ccciiiiiiiiineee e 172
INSTFUCTION EXECULION ...ocviiciiiciiee e 172
Instruction Execution CycCle TiMe ... e 173
Scheduling FPU INSTFUCTIONS.........cccoiiiiiiieceeenee e 175
FPU Pipeling OVerlapPing......cccccciiererieieisiese e se e stese e s aesassassesnenns 175
Instruction Scheduling CONSLraiNtScccccviiiieiiee e 176
Instruction Latency, Repeat Rate, and Pipeline Stage Sequences............. 181
Resource Scheduling RUIES ... 182

MIPS R4000 Microprocessor User's Manual Xix

Table of Contents

7
Floating-Point Exceptions
EXCEPLION TYPES.. .ottt bbb 188
EXCePtion Trap ProCeSSING.......cccciuciuiieieieseseseseseesteseseeseesie e seesesaeesnessessessessens 189
[Vo LSS 190
FPU EXCEPTIONS ...ttt 192
INEXACT EXCEPLION (1) 1oviieieiiicieeee et nne s 192
Invalid Operation EXCEPLION (V). ..coiiiiiiiiirieiesienie e 193
Division-by-Zero EXCEPLION (Z)covieiiiiiiiieiieienee e 194
Overflow EXCeption (O) ...ccvveiiiceieieeese st 194
Underflow EXCePion (U)......cccooiiiiiiiiiieiee e 195
Unimplemented Instruction EXCeption (E)ccoceorerninienieneineisecneenns 196
Saving and ReStOriNg StAteccccvvieieriieieee e ne 197
Trap Handlers for IEEE Standard 754 EXCEPLIONS.........cccevverieiieininieinene e 198
8
R4000 Processor Signal Descriptions

System Interface SigNalS.........ccooviiiiiiiieece e 201
Clock/Control Interface SIgnalsccooeiieiiiicicc e 203
Secondary Cache Interface Signals ... 205
Interrupt INterface SigNAlScccoce i 207
JTAG INnterface SIgNalS.........cccooiieiii e 207
Initialization Interface SigNalS ... 208
SIGNAL SUMMEIY ..ottt e e s e e e anens 209

XX MIPS R4000 Microprocessor User's Manual

Table of Contents

9
Initialization Interface
FUNCLIONAI OVEIVIBW ...ttt sne 214
Reset Signal DeSCIIPLION........cccicieieeiees e ene 215
POWEI-0N RESEL......cutiiiiiiiiiieite et 216
COIA RESEL ...ttt ettt 217
WWAIN RESEL ...ttt 217
INItIAliZAtiON SEQUENCE......cc.iiiiiiie e 218
BOOL-MOAE SEILINGS ...t 222
10
Clock Interface
SIgNal TErMINOIOQY ...c.viivieiieiecie et sre e srearnens 228
BasiC SYStEM CIOCKScuiiiiiiiice e 229
MASEEFCIOCK ...ttt b et et ettt neas 229
MASTEIOUL ...t b et 229
SYNCINZSYNCOUL.....oiiiiiiiiiccs e 229
PCIOCK .ttt 229
SCHOCK . e 230
TCHOCK .ttt ettt n e e ene s 230
RCIOCK ... ettt bbbttt sttt nes 230
PCIOCK-t0-SCIOCK DIVISION ... 230
System TimiNg Parametersccooeiieiineiieene e 233
ALIGNMENT 10 SCIOCK.......ciiiiiieietcce e ene s 233
Alignment to MasterCIOCK ... 233
Phase-LocKed LOOP (PLL)......ciiiiieirieirieinieisi et 233
Connecting Clocks to a Phase-Locked SyStem.........ccccoovveveveieniciciecieccceseaeens 234
Connecting Clocks to a System without Phase Locking...........ccccccoevevieiiieininnnn, 235
Connecting to a Gate-Array DEVICE ... 235
Connecting to @ CMOS LOQIC SYStEMcccvivviiiriree e 238
Processor STatus OUTPULScocueiirieiieiesiceiesie e 241

MIPS R4000 Microprocessor User's Manual XXi

Table of Contents

11
Cache Organization, Operation, and Coherency

MeMOrY OrganiZationccooeuiiiiirieirieisiesi s 244
Overview of Cache OPErationsccceveiereereiesiese e anea 245
RA4000 Cache DeSCIIPLION.......ccviieieieieiieiese ettt ene 246
SeCoNdary CaChe SIZE.......coocoiiiiiiiiee e 248
Variable-Length Cache LiNES ... 248
Cache Organization and AccesSIbIlityc.cccoveviiiieci i 248
Organization of the Primary Instruction Cache (I-Cache)............cc.cccc...... 249
Organization of the Primary Data Cache (D-Cache).......c..ccccceevvevvivvnninnn, 250
Accessing the Primary Caches..........coovevviieiiiieicccse e 251
Organization of the Secondary Cachecccceoiiiiinini, 252
Accessing the Secondary CacChe.........ccccoeiviv i 254
CACNE STATES.o e e ene 255
Primary Cache STAteS.........ccoiiiiiriiirieeneee s 256
Secondary Cache States........ccovvceiieiecicese e 256
Mapping States Between Caches ... 257
Cache Line OWNEISNIP ...c.cciiiiiieiiee e 258
CaChe WIITE POLICY ...cvvcvicecc st ene 259
Cache State Transition DiagramS..........ccocevieieiieiisiese e see e 260
Cache CONEreNCY OVEIVIEWcccociiiiiieirieisie sttt 264
Cache Coherency ALHIDULES.........cccvoiveiiiiece e 264
URNCACKNE ... e 265
NONCONEBIENT ...ttt et 265
SNAIADIE ... s 265
UPALE ... e 265
EXCIUSIVE ..ottt et ene s 266
Cache Operation MOAES.........c..coeieieieeieese e 266
Secondary-Cache MOAEccviiiiieeie e 266
No-Secondary-Cache MOdEccoccoiieiiiiiiiii e 266

] o] o [@] o [T T oo [SS 267
An Example of Strong Ordering..........cccvvrineninine e 267
Testing for Strong Ordering ... 267
Restarting the ProCESSONcccvcieiiiirse s se e e sneas 268
Maintaining Coherency on Loads and StOresS..........cccccvevevveieiiene e, 269
Manipulation of the Cache by an External Agent.........cccccoviviininiinncnenn, 270
INVAIAALE ..o e 270
UPALE .. bbbttt 270

xXii MIPS R4000 Microprocessor User's Manual

Table of Contents

T 010} o BT T TP O TSP PRSP PRUPRTPRUPRPRPPN 270
INEEIVENTION. ...ttt r et sne s 271
Coherency CONFIICTS.......coviiiice e 271
How Coherency Conflicts AFISEcccveiviiiiee e 272
Processor Coherent Read REQUESTS..........c.cvrievireiinicinieericesee e 272
Processor Invalidate or Update REqQUESTESccccevverieiereeeeienieie e 273
External Coherency REQUESTSccociiiiiierenine e 274
System Implications of Coherency Conflicts ... 275
SYSLEM MOAEL......ciiiiicee e 276
LOAA ... ettt 278

R3] 0] ¢SOOSO TTUPRUPTRPR 278
Processor Coherent Read Request and Read Response.......c..ccccveevvvreenene 278
Processor INVAlIALeccooiiiiiiiii e 279
PrOCESSOE WIITE ...ttt ene 279
Handling Coherency COoNflCES........ccccoeveiiiiciisesc e 280
Coherent Read CONFlICES........cccoiiiiiiiii e 280
Coherent Write CONFIICTSccooiiiiiiiiire e 281
INValidate CONFLICEScooeiiiiiie e 282
Sample Cycle: Coherent Read ReqUEST..........cccoiririieienceceee e 283
R4000 Processor Synchronization SUPPOIT.........ccocereireineiineinense e 286
Test-and-Set (SPINIOCK)c.oveieicicces e ene 286
L0701 U] o] (=T PP U USSP PRSP PRUPTPRUPRPRPPN 288
LL @NA SC ..ottt sttt et et ettt e 289
Examples Using LL and SC.......ccooeeieiccececc e 290

MIPS R4000 Microprocessor User's Manual xxiii

Table of Contents

12
System Interface

TEIMINOIOQY ..ttt b et eb b eb e 294
System Interface DEeSCrIPLIONcccvcvviiieeeeees e ene 294
INTEITACE BUSESctiitiieiieie ittt bbbttt sne s 295
Address and Data CYCIES ... 296
ISSUE CYCIES ...ttt ettt ettt n e e neenenrs 296
Handshake Signals...........ccoovieiiiic i 298
System Interface ProtoCoISccviiiiiieirce e 299
Master and SIAVE SEALES.........ccvieiiiriie et 299
Moving from Master to Slave State...........ccccceveiieeie i 300
External Arbitration.........cocooioiiiiiiieee s 300
Uncompelled Change to Slave State ... 301
Processor and EXternal REQUESTS ..o 302
Rules for Processor REQUESTS...........cviiiriiiricirieisiest s 303
PrOCESSOr REQUESTS......coiiieieiie ettt e st sneenee e e seesneeseenreens 304
Processor Read REQUEST ..o 306
Processor WIite REQUESTcoviiiiiiiiiiete et 307
Processor Invalidate REQUESTccocvviieiinire e 308
Processor Update REQUEST...........ccociiiiiiiienesere e 310

L0 U]] SRRSO 311
EXEErNAl REOQUESTS.......eciiieieii ettt sttt eneens 313
External Read REQUEST ..ot 316
EXternal WIIte REQUESTooviiiiiiicteete e 316
External Invalidate REQUESTc.ccocviviiii e 316
External Update REQUESTccoeiiiiiiiiire e 316
External SN00P REQUEST ..o 317
External INntervention REQUESEccccvvireiinine e 317
REAA RESPONSE ...ttt 317
HanNdliNg REQUESTSc.oiiiiiiiiiie st 318
LOAA MISS ...ttt ettt b et b e et ettt et 318
Secondary-Cache MOAEccviiiiieeie e 320
No-Secondary-Cache MOdEccoccoiieiiiiiiiii e 320
SEONE IMISS .ttt bbbt 321
Secondary-Cache MOAEccviiiiieeie e 323
No-Secondary-Cache MOdEccoccoiieiiiiiiiii e 325
SEOFE Hit..ooiiii bbbt 326
Secondary-Cache MOAEccceiiiiiieie e 326

XXiv MIPS R4000 Microprocessor User's Manual

Table of Contents

No-Secondary-Cache MOAEcooeiieiiiieiisese e 326
Uncached LOAads OF STOIESccuriiiiiriiirieirieesieesie e 326
(07N @1 o | @] o =T =11 o] 1RSSR 327
Load Linked Store Conditional Operation...........c.ccoccvevenenencicinieisenenine 327

Processor and External Request ProtoColS...........cccoeviiiiincineineceseiee 329
Processor ReqUESE ProtOCOIS..........covcieieecicece e 330

Processor Read Request Protocol ..o 330

Processor Write Request Protocolccoovveiniincineincneseceie 333

Processor Invalidate and Update Request Protocolc.ccocvvevievvvinnnne 335

Processor Null Write Request Protocol ... 336

Processor Cluster ReqUESE ProtoCOlc.cccvcvereinicineiiceseesieese e 337

Processor Request and Cluster Flow Control..........cccoceveeveiniiivscncinnnnnnns 338
External RequUESt ProtOCOIScc.oiiiiiiieicne s 341

External Arbitration ProtoCol............cccooiiiiiiiiieieeee e 342

External Read Request ProtoColccocvvvviviieievcnenescee e 343

External Null Request Protocol ... 344

External Write Request Protocolcccoeiiiiniincincincseeseseeie 347

External Invalidate and Update Request Protocols...........ccccceevvevieviivnnnnne 348

External Intervention Request Protocol ... 349

External Snoop Request Protocol ... 352

Read ReSpONSE ProtoCOL.........coccveviiiiiisise e 354

Data RAte CONTIOL.........coiiiiiieieiee e e 356
Data Transfer PAtternS.o 356
Secondary Cache TranSfers ... 357
Secondary Cache Write CycCle TIMEecceivcieii e 358
Independent Transmissions on the SYSAD BUS ... 359
System Interface ENAIANNESS.......c..coeiveiiiiieiise e 360

System Interface CyYCle TiMe... ... 361
Cluster REQUESTE SPACING ...c.veviriiiriiirieisieie e 361
REIEASE LALENCY ...vvveveciicie ettt sttt eneens 362
External Request ReSpoNnse LatenCyccccooeieiiiinineneie e 363

System Interface Commands and Data ldentifiers..........c.ccooeviienninnicncennnn, 364
Command and Data ldentifier SyntaX..........ccccoovvvienievencneierceese e 364
System Interface Command SYNTaXcccccveveiieciiiicie e 365

REAA REGUESTS ..ottt 366

WIITE REQUESES ...ttt st 367

NUIT REQUESTS ...ttt et 369

INValidate REQUESTScoueiiiiieiirieisie e 370

MIPS R4000 Microprocessor User's Manual XXV

Table of Contents

UPAAe REQUESTS ..ottt 370
Intervention and SNOOP REQUESTSceoiiriiiriireiriecseeses e 372
System Interface Data ldentifier SyntaXccccocviviievencicrencecese e 374
CONEIENT DALAouvieeeeeeee et 374
NONCONEIENT DALA.ceiiviieeieiieeee e et 374
Data Identifier Bit DefiNitioNS..........ccccooeiiiiiiiiniinceeee e 375
System INterface AGAIrESSESccviii i 377
AdAressing CONVENTIONScooeiiiiiiiiie et 377
Sequential and Subblock Ordering..........ccocvccviiivinene e 378
Processor Internal Address IMap ..o 378
13
Secondary Cache Interface

Data TranSfer RAEScccviiiiee st 380
DUuplicating SIGNAlScoiiiiiieeee e 380
Accessing a Split Secondary Cache..........ccoevviiniinii s 381
SCDCNK BUS ...ttt et nane 381
SCTAG BUS...coiciiieieiiee ettt sttt ettt sttt bbbt sb et et 381
Operation of the Secondary Cache Interface............cococooeniinienniensinccneee 382
T T O 1= SRS 383
4-WOrd REAd CYCIE.......ooieee et 383
8-WOrd REAA CYCIE.....coiiiiiiictecee s 384
Notes on a Secondary Cache Read CyCle.......cccccovvvverceveieceeceeecs e 384
WWIEIEE CYCIES ...ttt sttt e ene e 385
A-WOrd WIIte CYCIe... ..ot 385
8-WOIrd WIItE CYCIE ...t 386
Notes on a Secondary Cache Write CycCle........c.cccveveiviviieiicieecc e, 387

XXVi MIPS R4000 Microprocessor User's Manual

Table of Contents

14
JTAG Interface
What Boundary SCANNING IScoiiiiiiiiiieiiceseeseee s 390
SIGNAL SUMMEIY ..ottt e ene e neene s 391
JTAG Controller and REeQISTErS.........cccviieiieiesecie e 392
INSTFUCTION REGISTET ... ittt 392
BYPASS REGISIEL.....ccveiveciice ettt neens 393
BouNdary-SCan REQISTENcc.eviiiie ettt 394
TeSt ACCESS POIT (TAP) .o 395
TAP CONIOIIET ..ot 396
CONIOIEE RESEL ... e 396
CONIOIIEE STALES.....c.eieeeieieee e et 396
Implementation-Specific DetailS..........ccooveveiiiiice i 400
15
R4000 Processor Interrupts
Hardware INTEITUPTScoiiiiiei e 402
Nonmaskable Interrupt (NMI) ..o 402
ASSEITING INTEITUPTS ..ot e 402

MIPS R4000 Microprocessor User's Manual XXVii

Table of Contents

16
Error Checking and Correcting

Error Checking in the ProCESSOI ... 408
Types Of Error ChecKingcc.covoveiiieise s ne 408
Parity Error DEteCIONcocviieiicie e 408
SECDED ECC COUE.......ciiiiiieiiieiisicisiee sttt 409
Error Checking OpPerationccocoeeieieisese s 412
SYSEEM INLEITACEcviiice e 412
Secondary Cache Data BUS...........ccociriririiiinieinisesiese s 412
System Interface and Secondary Cache Data Bus............cccccoevvviivvivicnnnnn, 412
Secondary Cache Tag BUS........cccveiiiiie it 413
System Interface Command BUS ..o 413
SECDED ECC Matrices for Data and Tag BUSES.........cccccvevvereevevenniesennnees 414
ECC ChECK BilS....cuiiiiiiiiiicie sttt 414
Data ECC GENEIALIONccuiiiiiiiieie ettt sne s 415
Detecting Data TransSmiSSION EFTOIScoccvviieieiisevieseseseesieiereee s sese e 418
Single Data Bit ECC EFTOrcocov o 420
Single Check Bit ECC EITOr......cocci i 421
Double Data Bit ECC EITOrS........ccouieiieiieiniecse e 422
Three Data Bit ECC EFTOrScc.oooiiiiieieei s 423
Four Data Bit ECC EFTOIScouoieiiirieiesie e 424

Tag ECC GENEIAtiONccciieiceieece et nne s 425
Summary of ECC OPEratioNsS.cccoueiriiiiirinie et 426
R4400 Master/Checker MOGE.........c.cvoiiiiiiiiie e 430
Connecting a System iN LOCK STEPvcvvviviiriiisene e 431
Master-Listener Configurationc.cccvecivieii i 432
Cross-Coupled Checking Configuration.............ccoccveiieineinenneseneee 433
FAUIT DELECLION ..ot 435
RESEE OPEIALION ...ttt et 436
FAUIT HISTOTY ...t 436

XXVili MIPS R4000 Microprocessor User's Manual

Table of Contents

CPU Instruction Set Details

FPU Instruction Set Details

Subblock Ordering

SeqUENTIAL OFAEITNGc.eiiiiiiiiiie it ene C-2
SUDDIOCK OFderingcocviiiiiiiieiree e C-2

Output Buffer Ai/At Control Mechanism

Yoo [=N ST (OSSR D-1
(1= | T TSRS D-2

PLL Passive Components

Coprocessor 0 Hazards

R4000 Pinouts

Pinout 0f RADD0PC.........cooiiieiire ettt G-2
Pinout of RA000MC/SC Package PINOULcccveiiineiiieiesesese e G-5

Index

MIPS R4000 Microprocessor User's Manual XXiX

Table of Contents

XXX MIPS R4000 Microprocessor User's Manual

Introduction

Historically, the evolution of computer architectures has been dominated
by families of increasingly complex central processors. Under market
pressures to preserve existing software, complex instruction set computer
(CISC) architectures evolved by the accretion of microcode and
increasingly intricate instruction sets. This intricacy in architecture was
itself driven by the need to support high-level languages and operating
systems, as advances in semiconductor technology made it possible to
fabricate integrated circuits of greater and greater complexity. And at that
time it seemed self-evident to designers that architectures should continue
to become more and more complex as technological advances made such
VLSI designs possible.

MIPS R4000 Microprocessor User's Manual 1

Chapter 1

In recent years, however, reduced instruction set computer (RISC)
architectures are implementing a different model for the interaction
between hardware, firmware, and software. RISC concepts emerged from
a statistical analysis of the way in which software actually uses processor
resources: dynamic measurement of system kernels and object modules
generated by optimizing compilers showed that the simplest instructions
were used most often—even in the code for CISC machines.
Correspondingly, complex instructions often went unused because their
single way of performing a complex operation rarely matched the precise
needs of a high-level language.

RISC architecture eliminates microcode routines and turns low-level
control of the machine over to software. The RISC approach is not new,
but its application has become more prevalent in recent years, due to the
increasing use of high-level languages, the development of compilers that
are able to optimize at the microcode level, and dramatic advances in
semiconductor memory and packaging. It is now feasible to replace
relatively slow microcode ROM with faster RAM that is organized as an
instruction cache. Machine control resides in this instruction cache that is,
in effect, customized on-the-fly: the instruction stream generated by
system- and compiler-generated code provides a precise fit between the
requirements of high-level software and the low-level capabilities of the
hardware.

Reducing or simplifying the instruction set was not the primary goal of
RISC architecture; it is a pleasant side effect of techniques used to gain the
highest performance possible from available technology. Thus, the term
reduced instruction set computers is a bit misleading; it is the push for
performance that really drives and shapes RISC designs.

1.1 Benefits of RISC Design

Some benefits that result from RISC design techniques are not directly
attributable to the drive to increase performance, but are a result of the
basic reduction in complexity—a simpler design allows both chip-area
resources and human resources to be applied to features that enhance
performance. Some of these benefits are described below.

MIPS R4000 Microprocessor User's Manual

Introduction

Shorter Design Cycle

The architectures of RISC processors can be implemented more quickly
than their CISC counterparts: it is easier to fabricate and debug a
streamlined, simplified architecture with no microcode than a complex
architecture that uses microcode. CISC processors have such a long
design cycle that they may not be completely debugged by the time they
are technologically obsolete. The shorter time required to design and
implement RISC processors allows them to make use of the best available
technologies.

Effective Utilization of Chip Area

The simplicity of RISC processors also frees scarce chip geography for
performance-critical resources such as larger register files, translation
lookaside buffers (TLBs), coprocessors, and fast multiply and divide units.
Such resources help RISC processors obtain an even greater performance
edge.

User (Programmer) Benefits

Simplicity in architecture also helps the user by providing a uniform
instruction set that is easier to use. This allows a closer correlation
between the instruction count and the cycle count, making it easier to
measure code optimization activities.

Advanced Semiconductor Technologies

Each new VLSI technology is introduced with tight limits on the number
of transistors that fit on each chip. Since the simplicity of a RISC processor
allows it to be implemented in fewer transistors than its CISC counterpart,
the first computers capable of exploiting these new VLSI technologies
have been using and will continue to use RISC architecture.

MIPS R4000 Microprocessor User's Manual 3

Chapter 1

Optimizing Compilers

RISC architecture is designed so that the compilers, not assembly
languages, have the optimal working environment. RISC philosophy
assumes that high-level language programming is used, which contradicts
the older CISC philosophy that assumes assembly language programming
is of primary importance.

The trend toward high-level language instructions has led to the
development of more efficient compilers to convert high-level language
instructions to machine code. Primary measures of compiler efficiency are
the compactness of its generated code and the shortness of its execution
time.

During the development of more efficient compilers, analysis of
instruction streams revealed that the greatest amount of time was spent
executing simple instructions and performing load and store operations,
while the more complex instructions were used less frequently. Itwas also
learned that compilers produce code that is often a narrow subset of the
processor instruction set architecture (ISA). A compiler works more
efficiently with instructions that perform simple, well-defined operations
and generate minimal side-effects. Compilers do not use complex
instructions and features; the more complex, powerful instructions are
either too difficult for the compiler to employ or those instructions do not
precisely fit high-level language requirements.

Thus, a natural match exists between RISC architectures and efficient,
optimizing compilers. This match makes it easier for compilers to
generate the most effective sequences of machine instructions to
accomplish tasks defined by the high-level language.

MIPS R4000 Microprocessor User's Manual

Introduction

MIPS RISCompiler Language Suite

Some compiler products are derived from disparate sources and
consequently do not fit together very well. Instead of treating each
language’s compiler as a separate entity, the MIPS RISCompiler™
language suite shares common elements across the entire family of
compilers. In this way the language suite offers both tight integration and
broad language coverage.

The MIPS language suite supports:

= industry-standard front ends for the following languages (C,
FORTRAN, Pascal)

= acommon intermediate language, offering an efficient way to
add language front ends over time

= all of the back end optimization and code generation
= the same object format and calling conventions
= mixed-language programs

= debugging of programs written in all languages, including
mixtures

This language suite approach yields high-quality compilers for all
languages, since common elements make up the majority of each of the
language products. In addition, this approach provides the ability to
develop and execute multi-language programs, promoting flexibility in
development, avoiding the necessity of recoding proven program
segments, and protecting the user’s software investment. The common
back-end also exports optimizing and code-generating improvements
immediately throughout the language suite, thereby reducing
maintenance.

MIPS R4000 Microprocessor User's Manual 5

Chapter 1

1.2 Compatibility

The R4000 processor provides complete application software
compatibility with the MIPS R2000, R3000, and R6000 processors.
Although the MIPS processor architecture has evolved in response to a
compromise between software and hardware resources in the computer
system, the R4000 processor implements the MIPS ISA for user-mode
programs. This guarantees that user programs conforming to the ISA
execute on any MIPS hardware implementation.

1.3 Processor General Features

This section briefly describes the programming model, the memory
management unit (MMU), and the caches in the R4000 processor. A more
detailed description is given in succeeding sections.

= Full 32-bit and 64-bit Operations. The R4000 processor
contains 32 general purpose 64-bit registers. (When operating
as a 32-bit processor, the general purpose registers are 32-bits
wide.) All instructions are 32 bits wide.

- Efficient Pipeline. The superpipeline design of the processor
results in an execution rate approaching one instruction per
cycle. Pipeline stalls and exceptional events are handled
precisely and efficiently.

< MMU. The R4000 processor uses an on-chip TLB that provides
rapid virtual-to-physical address translation.

= Cache Control. The R4000 primary instruction and data caches
reside on-chip, and can each hold 8 Kbytes. In the R4400
processor, the primary caches can each hold 16 Kbytes.
Architecturally, each primary cache can be increased to hold up
to 32 Khytes. An off-chip secondary cache (R4000SC and
R4000MC processors only) can hold from 128 Kbytes to 4
Mbytes. All processor cache control logic, including the
secondary cache control logic, is on-chip.

= Floating-Point Unit. The FPU is located on-chip and
implements the ANSI/ZIEEE standard 754-1985.

6 MIPS R4000 Microprocessor User's Manual

Introduction

1.4 R4000 Processor Configurations

The R4000 processorJr is packaged in three different configurations. All
processors are implemented in sub-1-micron CMOS technology.

< RA4000PC is designed for cost-sensitive systems such as
inexpensive desktop systems and high-end embedded
controllers. It is packaged in a 179-pin PGA, and does not
support a secondary cache.

= RA4000SC is designed for high-performance uniprocessor
systems. It is packaged in a 447-pin LGA/PGA and includes
integrated control for large secondary caches built from
standard SRAM:s.

< R4000MC is designed for large cache-coherent multiprocessor
systems. It is packaged in a 447-pin LGA/PGA and, in addition
to the features of R4000SC, includes support for a wide variety
of bus designs and cache-coherency mechanisms.

Table 1-1 lists the features in each of the three configurations (X indicates
the feature is present). R4400 processor enhancements are described in the
section following.

1.5 R4400 Processor Enhancements
In addition to the features contained in the R4000 processor, the R4400
processor has the following enhancements:
= fully functional Status pins (described in Chapter 10)
= Master/Checker mode (described in Chapter 16)

= larger primary caches (described in Processor General Features,
in this chapter)

= uncached store buffer (described in Chapter 3)
= divide-by-6 and divide-by-8 modes (described in Chapter 10)

= cache error bit, EW, added to the CacheErr register (described in
Chapter 5).

t Features of the R4400 processor that differ from the R4000 processor are noted throughout
this book; for instance, R4400 processor enhancements are listed in the next section.
Otherwise, references to the R4000 processor may be taken to include the R4400 processor.

MIPS R4000 Microprocessor User's Manual 7

Chapter 1

Table 1-1 R4000 Features

Feature R4000PC R4000SC R4000MC
Primary Cache States

Valid X X X

Shared X

Clean Exclusive X X

Dirty Exclusive X X X
Secondary Cache Interface X X

Secondary Cache States

Valid X X X

Shared X

Dirty Shared X

Clean Exclusive X X

Dirty Exclusive X X X
Multiprocessing X

Cache Coherency Attributes

Uncached X X X

Noncoherent X X X

Sharable X

Update X

Exclusive X

Packages
PGA (179-pin) X
PGA (447-pin) X X

MIPS R4000 Microprocessor User's Manual

Introduction

1.6 R4000 Processor

This section describes the following:

64-bit Architecture

the 64-bit architecture of the R4000 processor

the superpipeline design of the CPU instruction pipeline
(described in detail in Chapter 3)

an overview of the System interface (described in detail in
Chapter 12)

an overview of the CPU registers (detailed in Chapters 4 and 5)
and CPU instruction set (detailed in Chapter 2 and Appendix
A)

data formats and byte ordering

the System Control Coprocessor, CP0, and the floating-point
unit, CP1

caches and memory, including a description of primary and
secondary caches, the memory management unit (MMU), the
translation lookaside buffer (TLB), and the Secondary Cache
interface (described in more detail in Chapters 4 and 11). The
Secondary Cache interface is detailed in Chapter 13.

The natural mode of operation for the R4000 processor is as a 64-bit
microprocessor; however, 32-bit applications maintain compatibility even
when the processor operates as a 64-bit processor.

The R4000 processor provides the following:

64-bit on-chip floating-point unit (FPU)
64-bit integer arithmetic logic unit (ALU)
64-bit integer registers

64-bit virtual address space

64-bit system bus

Figure 1-1 is a block diagram of the R4000 processor internals.

MIPS R4000 Microprocessor User's Manual 9

Chapter 1

64-bit System Bus

-
A
System S-cache Data Cache |=<——| P-cache »| |nstruction
Control Control Control Cache
I I I
3 3 3 .
- -
A
CPO Y CPU FPU
i FPU Registers
Exception/Control CPU Registers g
Registers

Registers

Memory Management

Translation
Lookaside
Buffers

ALU

Pipeline Bypass

Load Aligner/Store Driver

FP Multiplier

Integer Multiplier/Divider

FP Divider

Address Unit

PC Incrementer

)

FP Add, Convert
Square Root

Pipeline Control

Figure 1-1 R4000 Processor Internal Block Diagram

10

MIPS R4000 Microprocessor User's Manual

Introduction

Superpipeline Architecture

The R4000 processor exploits instruction parallelism by using an eight-
stage superpipeline which places no restrictions on the instruction issued.
Under normal circumstances, two instructions are issued each cycle.

The internal pipeline of the R4000 processor operates at twice the
frequency of the master clock, as discussed in Chapter 3. The processor
achieves high throughput by pipelining cache accesses, shortening
register access times, implementing virtual-indexed primary caches, and
allowing the latency of functional units to span more than one pipeline
clock cycles.

System Interface

The R4000 processor supports a 64-bit System interface that can construct
uniprocessor systems with a direct DRAM interface—with or without a
secondary cache—or cache-coherent multiprocessor systems. The System
interface includes:

= a 64-bit multiplexed address and data bus
= 8 check bits

* a 9-bit parity-protected command bus

= 8 handshake signals

The interface is capable of transferring data between the processor and
memory at a peak rate of 400 Mbytes/second, when running at 50 MHz.

MIPS R4000 Microprocessor User's Manual 11

Chapter 1

CPU Register Overview

The central processing unit (CPU) provides the following registers:
= 32 general purpose registers
< a Program Counter (PC) register

= 2 registers that hold the results of integer multiply and divide
operations (HI and LO).

Floating-point unit (FPU) registers are described in Chapter 6.

CPU registers can be either 32 bits or 64 bits wide, depending on the R4000
processor mode of operation.

Figure 1-2 shows the CPU registers.

General Purpose Registers

63 320 31 0 Multiply and Divide Registers
d 63 32 31 0
rl HI I
r2 63 3231 0

: LO I

Program Counter

r29 63 32 31 0
r30 PC I
r31

Register width depends on mode of operation: 32-bit or 64-bit

Figure 1-2 CPU Registers

12 MIPS R4000 Microprocessor User's Manual

Introduction

Two of the CPU general purpose registers have assigned functions:

< r0is hardwired to a value of zero, and can be used as the target
register for any instruction whose result is to be discarded. r0
can also be used as a source when a zero value is needed.

= 131l is the link register used by Jump and Link instructions. It
should not be used by other instructions.

The CPU has three special purpose registers:
e PC — Program Counter register
= HI — Multiply and Divide register higher result
e LO — Multiply and Divide register lower result
The two Multiply and Divide registers (HI, LO) store:

< the product of integer multiply operations, or

= the quotient (in LO) and remainder (in HI) of integer divide
operations

The R4000 processor has no Program Status Word (PSW) register as such;
this is covered by the Status and Cause registers incorporated within the
System Control Coprocessor (CP0). CPO registers are described later in
this chapter.

MIPS R4000 Microprocessor User's Manual 13

Chapter 1

CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-3, there are
three instruction formats:

< immediate (I-type)

= jump (J-type)

= register (R-type)

31 26 25 2120 16 15 0
I-Type (Immediate) op rs rt immediate

31 26 25 0
J-Type (Jump) op target

31 2625 2120 1615 1110 65 0
R-Type (Register) op rs rt rd sa | funct

Figure 1-3 CPU Instruction Formats

Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

Instruction decoding is greatly simplified by limiting the number of
formats to these three. This limitation means that the more complicated
(and less frequently used) operations and addressing modes can be
synthesized by the compiler, using sequences of these same simple
instructions.

14 MIPS R4000 Microprocessor User's Manual

Introduction

The instruction set can be further divided into the following groupings:

Load and Store instructions move data between memory and
general registers. They are all immediate (I-type) instructions,
since the only addressing mode supported is base register plus
16-bit, signed immediate offset.

Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They
include register (R-type, in which both the operands and the
result are stored in registers) and immediate (I-type, in which
one operand is a 16-bit immediate value) formats.

Jump and Branch instructions change the control flow of a
program. Jumps are always made to a paged, absolute address
formed by combining a 26-bit target address with the high-
order bits of the Program Counter (J-type format) or register
address (R-type format). Branches have 16-bit offsets relative
to the program counter (I-type). Jump And Link instructions
save their return address in register 31.

Coprocessor instructions perform operations in the
coprocessors. Coprocessor load and store instructions are
I-type.

Coprocessor 0 (system coprocessor) instructions perform
operations on CPO registers to control the memory
management and exception handling facilities of the processor.
These are listed in Table 1-18.

Special instructions perform system calls and breakpoint
operations. These instructions are always R-type.

Exception instructions cause a branch to the general exception-
handling vector based upon the result of a comparison. These
instructions occur in both R-type (both the operands and the
result are registers) and I-type (one operand is a 16-bit
immediate value) formats.

Chapter 2 provides a more detailed summary and Appendix A gives a
complete description of each instruction.

MIPS R4000 Microprocessor User's Manual 15

Chapter 1

Tables 1-2 through 1-17 list CPU instructions common to MIPS R-Series
processors, along with those instructions that are extensions to the
instruction set architecture. The extensions result in code space
reductions, multiprocessor support, and improved performance in
operating system kernel code sequences—for instance, in situations where
run-time bounds-checking is frequently performed. Table 1-18 lists CP0

instructions.

Table 1-2 CPU Instruction Set: Load and Store Instructions

OpCode Description
LB Load Byte
LBU Load Byte Unsigned
LH Load Halfword
LHU Load Halfword Unsigned
LW Load Word
LWL Load Word Left
LWR Load Word Right
SB Store Byte
SH Store Halfword
SW Store Word
SWL Store Word Left
SWR Store Word Right

Table 1-3 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)

OpCode Description
ADDI Add Immediate
ADDIU Add Immediate Unsigned
SLTI Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
ANDI AND Immediate
ORI OR Immediate
XORI Exclusive OR Immediate
LUI Load Upper Immediate

16

MIPS R4000 Microprocessor User's Manual

Introduction

Table 1-4 CPU Instruction Set: Arithmetic (3-Operand, R-Type)
OpCode Description
ADD Add
ADDU Add Unsigned
SUB Subtract
SUBU Subtract Unsigned
SLT Set on Less Than
SLTU Set on Less Than Unsigned
AND AND
OR OR
XOR Exclusive OR
NOR NOR

Table 1-5 CPU Instruction Set: Multiply and Divide Instructions

OpCode Description
MULT Multiply
MULTU Multiply Unsigned
DIV Divide
DIVU Divide Unsigned
MFHI Move From HI
MTHI Move To HI
MFLO Move From LO
MTLO Move To LO

MIPS R4000 Microprocessor User's Manual

17

Chapter 1

Table 1-6 CPU Instruction Set: Jump and Branch Instructions

OpCode

Description

J

Jump

JAL

Jump And Link

JR

Jump Register

JALR

Jump And Link Register

BEQ

Branch on Equal

BNE

Branch on Not Equal

BLEZ

Branch on Less Than or Equal to Zero

BGTZ

Branch on Greater Than Zero

BLTZ

Branch on Less Than Zero

BGEZ

Branch on Greater Than or Equal to Zero

BLTZAL

Branch on Less Than Zero And Link

BGEZAL

Branch on Greater Than or Equal to Zero And Link

Table 1-7 CPU Instruction Set: Shift Instructions

OpCode

Description

SLL

Shift Left Logical

SRL

Shift Right Logical

SRA

Shift Right Arithmetic

SLLV

Shift Left Logical Variable

SRLV

Shift Right Logical Variable

SRAV

Shift Right Arithmetic Variable

18

MIPS R4000 Microprocessor User's Manual

Introduction

Table 1-8 CPU Instruction Set: Coprocessor Instructions

OpCode Description
LWCz Load Word to Coprocessor z
SWCz Store Word from Coprocessor z
MTCz Move To Coprocessor z
MFCz Move From Coprocessor z
CTCz Move Control to Coprocessor z
CFCz Move Control From Coprocessor z
COPz Coprocessor Operation z
BCzT Branch on Coprocessor z True
BCzF Branch on Coprocessor z False

Table 1-9 CPU Instruction Set: Special Instructions

OpCode Description
SYSCALL System Call
BREAK Break

MIPS R4000 Microprocessor User's Manual

19

Chapter 1

Table 1-10 Extensions to the ISA: Load and Store Instructions

OpCode Description
LD Load Doubleword
LDL Load Doubleword Left
LDR Load Doubleword Right
LL Load Linked
LLD Load Linked Doubleword
LWuU Load Word Unsigned
SC Store Conditional
SCD Store Conditional Doubleword
SD Store Doubleword
SDL Store Doubleword Left
SDR Store Doubleword Right
SYNC Sync

Table 1-11 Extensions to the ISA: Arithmetic Instructions (ALU Immediate)

OpCode Description
DADDI Doubleword Add Immediate
DADDIU Doubleword Add Immediate Unsigned

Table 1-12 Extensions to the ISA: Multiply and Divide Instructions

OpCode Description
DMULT Doubleword Multiply
DMULTU Doubleword Multiply Unsigned
DDIV Doubleword Divide
DDIVU Doubleword Divide Unsigned

20

MIPS R4000 Microprocessor User's Manual

Introduction

Table 1-13 Extensions to the ISA: Branch Instructions

OpCode Description
BEQL Branch on Equal Likely
BNEL Branch on Not Equal Likely
BLEZL Branch on Less Than or Equal to Zero Likely
BGTZL Branch on Greater Than Zero Likely
BLTZL Branch on Less Than Zero Likely
BGEZL Branch on Greater Than or Equal to Zero Likely
BLTZALL Branch on Less Than Zero And Link Likely
BGEZALL Eirli\;;h on Greater Than or Equal to Zero And Link
BCzTL Branch on Coprocessor z True Likely
BCzFL Branch on Coprocessor z False Likely

Table 1-14 Extensions to the ISA: Arithmetic Instructions (3-operand, R-type)

OpCode Description
DADD Doubleword Add
DADDU Doubleword Add Unsigned
DSUB Doubleword Subtract
DSUBU Doubleword Subtract Unsigned

MIPS R4000 Microprocessor User's Manual 21

Chapter 1

Table 1-15 Extensions to the ISA: Shift Instructions

OpCode

Description

DSLL

Doubleword Shift Left Logical

DSRL

Doubleword Shift Right Logical

DSRA

Doubleword Shift Right Arithmetic

DSLLV

Doubleword Shift Left Logical Variable

DSRLV

Doubleword Shift Right Logical Variable

DSRAV

Doubleword Shift Right Arithmetic Variable

DSLL32

Doubleword Shift Left Logical + 32

DSRL32

Doubleword Shift Right Logical + 32

DSRA32

Doubleword Shift Right Arithmetic + 32

Table 1-16 Extensions to the ISA: Exception Instructions

OpCode

Description

TGE

Trap if Greater Than or Equal

TGEU

Trap if Greater Than or Equal Unsigned

TLT

Trap if Less Than

TLTU

Trap if Less Than Unsigned

TEQ

Trap if Equal

TNE

Trap if Not Equal

TGEI

Trap if Greater Than or Equal Immediate

TGEIU

Trap if Greater Than or Equal Immediate
Unsigned

TLTI

Trap if Less Than Immediate

TLTIU

Trap if Less Than Immediate Unsigned

TEQI

Trap if Equal Immediate

TNEI

Trap if Not Equal Immediate

22

MIPS R4000 Microprocessor User's Manual

Introduction

Table 1-17 Extensions to the ISA: Coprocessor Instructions

OpCode Description
DMFCz Doubleword Move From Coprocessor z
DMTCz Doubleword Move To Coprocessor z
LDCz Load Double Coprocessor z
SDCz Store Double Coprocessor z

Table 1-18 CPO Instructions

OpCode Description
DMFCO Doubleword Move From CPO
DMTCO Doubleword Move To CPO
MTCO Move to CPO
MFCO Move from CPO
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP Probe TLB for Matching Entry
CACHE Cache Operation
ERET Exception Return

MIPS R4000 Microprocessor User's Manual 23

Chapter 1

Data Formats and Addressing

The R4000 processor uses four data formats: a 64-bit doubleword, a 32-bit
word, a 16-bit halfword, and an 8-bit byte. Byte ordering within each of
the larger data formats—halfword, word, doubleword—can be
configured in either big-endian or little-endian order. Endianness refers
to the location of byte 0 within the multi-byte data structure. Figures 1-4
and 1-5 show the ordering of bytes within words and the ordering of
words within multiple-word structures for the big-endian and little-
endian conventions.

When the R4000 processor is configured as a big-endian system, byte 0 is
the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000" and IBM 370" conventions. Figure 1-4 shows this
configuration.

Higher Word Bit, #

Address Address [31 24 23 1615 8 7 ol
12 \ 12 H 13 H 14 H 15 \
8 | 8 | 9 | 10 | u |
4 | HE

Lower ‘ H 1 ‘ 3

Address

Figure 1-4 Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least-
significant (rightmost) byte, which is compatible with iAPX" x86 and DEC
vAXx" conventions. Figure 1-5 shows this configuration.

Higher Word Bitl#

Address Address |31 24 23 1615 8 7 ol
12 \ 15 H 14 H 13 H 12 \
g | u | 10 | 9 | |
4 | L s | 5 | |

Lower L 8 2 |t | o |

Address

Figure 1-5 Little-Endian Byte Ordering

24 MIPS R4000 Microprocessor User's Manual

Introduction

In this text, bit 0 is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).

Figures 1-6 and 1-7 show little-endian and big-endian byte ordering in
doublewords.

Most-significant byte Least-significant byte

Word

|
Bit # 63 \5655 48 47 4039 3231 2423 1615 87 \\ o
pyes | 7 |l 6 [5 | 4][3 | 2 || ¢][0|

Halfword Byte ﬁ

|
Bit#/7 6 5 4 32 1 0l

IR EEEEN

Bits in a Byte
Figure 1-6 Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte

Word
I

Bit # 63 | 5655 48 47 4039 32131 2423 1615 87 \ 0
Byte#| O | 1 |2 L3 L4 s e |[7

B I B
Halfword Byte

|
Bit#/7 6 5 4 3 2 1 ol

N I

Bits in a Byte

Figure 1-7 Big-Endian Data in a Doubleword

MIPS R4000 Microprocessor User's Manual 25

Chapter 1

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:

< Halfword accesses must be aligned on an even byte boundary
0, 2,4..).

< Word accesses must be aligned on a byte boundary divisible by
four (0, 4, 8...).

< Doubleword accesses must be aligned on a byte boundary
divisible by eight (0, 8, 16...).

The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries:
LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned
words. Addressing misaligned data incurs one additional instruction
cycle over that required for addressing aligned data.

Figures 1-8 and 1-9 show the access of a misaligned word that has byte
address 3.

Higher
Address Bit #
I
[31 24 23 1615 8 7 ol
L 4 | s | 8 | |
| [[| 3 |
Lower
Address

Figure 1-8 Big-Endian Misaligned Word Addressing

Higher

Address Bitl#
[31 24 23 1615 8 7 ol
| L6 | 5 || 4 |
L3 | H I |

Lower

Address

Figure 1-9 Little-Endian Misaligned Word Addressing

26

MIPS R4000 Microprocessor User's Manual

Introduction

Coprocessors (CP0-CP2)

The MIPS ISA defines three coprocessors (designated CP0 through CP2):

= Coprocessor 0 (CPO0) is incorporated on the CPU chip and
supports the virtual memory system and exception handling.
CPO is also referred to as the System Control Coprocessor.

= Coprocessor 1 (CP1) is reserved for the on-chip, floating-point
coprocessor, the FPU.

= Coprocessor 2 (CP2) is reserved for future definition by MIPS.
CPO0 and CP1 are described in the sections that follow.

System Control Coprocessor, CPO

CPO translates virtual addresses into physical addresses and manages

exceptions and transitions between kernel, supervisor, and user states.
CPO0 also controls the cache subsystem, as well as providing diagnostic
control and error recovery facilities.

The CPO registers shown in Figure 1-10 and described in Table 1-19
manipulate the memory management and exception handling capabilities
of the CPU.

MIPS R4000 Microprocessor User's Manual 27

Chapter 1

Register Name Reg. #
Index 0
Random 1
EntryLoO 2
EntryLol 3
Context 4
PageMask 5
Wired 6

I

BadVAddr 8

Count 9

EntryHi 10
Compare 11
SR 12
Cause 13
EPC 14
PRId 15

[] Exception Processing

Register Name Reg. #
Config 16
LLAddr 17
WatchLo 18
WatchHi 19
XContext 20
21
22
23
24
25
ECC 26
CacheErr 27
TaglLo 28
TagHi 29
ErrorEPC 30

I

[] Memory Management

Figure 1-10 R4000 CPO Registers

I Reserved

28

MIPS R4000 Microprocessor User®s Manual

Introduction

Table 1-19 System Control Coprocessor (CP0) Register Definitions
Number Register Description
0 Index Programmable pointer into TLB array
1 Random Pseudorandom pointer into TLB array (read only)
2 EntryLo0O Low half of TLB entry for even virtual address (VPN)
3 EntryLol Low half of TLB entry for odd virtual address (VPN)
4 Context zgjjr;teirs ;[ggkﬁqrgglevirtual page table entry (PTE) in 32-bit
5 PageMask TLB Page Mask
6 Wired Number of wired TLB entries
7 — Reserved
8 BadVAddr | Bad virtual address
9 Count Timer Count
10 EntryHi High half of TLB entry
11 Compare Timer Compare
12 SR Status register
13 Cause Cause of last exception
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Configuration register
17 LLAddr Load Linked Address
18 WatchLo Memory reference trap address low bits
19 WatchHi Memory reference trap address high bits
20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode
21-25 — Reserved
26 ECC Ses:ondary—cfalche error checking and correcting (ECC) and
Primary parity
27 CacheErr Cache Error and Status register
28 TagLo Cache Tag register
29 TagHi Cache Tag register
30 ErrorEPC Error Exception Program Counter
31 — Reserved

MIPS R4000 Microprocessor User's Manual 29

Chapter 1

Floating-Point Unit (FPU), CP1

The MIPS floating-point unit (FPU) is designated CP1; the FPU extends
the CPU instruction set to perform arithmetic operations on floating-point
values. The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic.

The FPU features include:

Full 64-bit Operation. The FPU can contain either 16 or 32
64-bit registers to hold single-precision or double-precision
values. The FPU also includes a 32-bit Status/Control register
that provides access to all IEEE-Standard exception handling
capabilities.

Load and Store Instruction Set. Like the CPU, the FPU uses a
load- and store-based instruction set. Floating-point operations
are started in a single cycle and their execution overlaps other
fixed-point or floating-point operations.

Tightly-coupled Coprocessor Interface. The FPU is on the
CPU chip, and appears to the programmer as a simple
extension of the CPU (accessed as CP1). Together, the CPU and
FPU form a tightly-coupled unit with a seamless integration of
floating-point and fixed-point instruction sets. Since each unit
receives and executes instructions in parallel, some floating-
point instructions can execute at the same rate (two
instructions per cycle) as fixed-point instructions.

30

MIPS R4000 Microprocessor User's Manual

Introduction

Memory Management System (MMU)

The R4000 processor has a 36-bit physical addressing range of 64 Gbytes.
However, since it is rare for systems to implement a physical memory
space this large, the CPU provides a logical expansion of memory space by
translating addresses composed in the large virtual address space into
available physical memory addresses. The R4000 processor supports the
following two addressing modes:

= 32-bit mode, in which the virtual address space is divided into
2 Ghytes per user process and 2 Gbytes for the kernel.

= 64-bit mode, in which the virtual address is expanded to
1 Tbyte (2*° bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 4.

The Translation Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a translation lookaside buffer,
which caches virtual-to-physical address translations. This fully-
associative, on-chip TLB contains 48 entries, each of which maps a pair of
variable-sized pages ranging from 4 Kbytes to 16 Mbytes, in multiples of
four.

Instruction TLB

The R4000 processor has a two-entry instruction TLB (ITLB) which assists
in instruction address translation. The ITLB is completely invisible to
software and exists only to increase performance.

Joint TLB

An address translation value is tagged with the most-significant bits of its
virtual address (the number of these bits depends upon the size of the
page) and a per-process identifier. If there is no matching entry in the TLB,
an exception is taken and software refills the on-chip TLB from a page
table resident in memory; this TLB is referred to as the joint TLB (JTLB)
because it contains both data and instructions jointly. The JTLB entry to
be rewritten is selected at random.

MIPS R4000 Microprocessor User's Manual 31

Chapter 1

Operating Modes

The R4000 processor has three operating modes:
e User mode
e Supervisor mode

e Kernel mode

The manner in which memory addresses are translated or mapped depends
on the operating mode of the CPU; this is described in Chapter 4.

Cache Memory Hierarchy

To achieve a high performance in uniprocessor and multiprocessor
systems, the R4000 processor supports a two-level cache memory
hierarchy that increases memory access bandwidth and reduces the
latency of load and store instructions. This hierarchy consists of on-chip
instruction and data caches, together with an optional external secondary
cache that varies in size from 128 Kbytes to 4 Mbytes.

The secondary cache is assumed to consist of one bank of industry-
standard static RAM (SRAM) with output enables, arranged as a
guadword (128-bit) data array, with a 25-bit-wide tag array. Check fields
are added to both data and tag arrays to improve data integrity.

The secondary cache can be configured as a joint cache, or split into
separate instruction and data caches. The maximum secondary cache size
is 4 Mbytes; the minimum secondary cache size is 128 Kbytes for a joint
cache, or 256 Kbytes total for split instruction/data caches. The secondary
cache is direct mapped, and is addressed with the lower part of the
physical address.

Primary and secondary caches are described in more detail in Chapter 11.

32

MIPS R4000 Microprocessor User's Manual

Introduction

Primary Caches

The R4000 processor incorporates separate on-chip primary instruction
and data caches to fill the high-performance pipeline. Each cache has its
own 64-bit data path, and each can be accessed in parallel.

The R4000 processor primary caches hold from 8 Kbytes to 32 Kbytes; the
R4400 processor primary caches are fixed at 16 Kbytes.

Cache accesses can occur up to twice each cycle. This provides the integer
and floating-point units with an aggregate bandwidth of 1.6 Gbytes per
second at a MasterClock frequency of 50 MHz.

Secondary Cache Interface

The R4000SC (secondary cache) and R4000MC (multiprocessor) versions
of the processor allow connection to an optional secondary cache. These
processors provide all of the secondary cache control circuitry, including
error checking and correcting (ECC) protection, on chip.
The Secondary Cache interface includes:

= a 128-bit data bus

= a 25-bit tag bus

= an 18-bit address bus

= SRAM control signals

The 128-bit-wide data bus is designed to minimize cache miss penalties,
and allow the use of standard low-cost SRAM in secondary cache.

MIPS R4000 Microprocessor User's Manual 33

Chapter 1

34

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Summary

This chapter is an overview of the central processing unit (CPU)
instruction set; refer to Appendix A for detailed descriptions of individual
CPU instructions.

An overview of the floating-point unit (FPU) instruction set is in
Chapter 6; refer to Appendix B for detailed descriptions of individual FPU
instructions.

MIPS R4000 Microprocessor User's Manual 35

Chapter 2

2.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type)—as shown in Figure 2-1. The use of a small
number of instruction formats simplifies instruction decoding, allowing
the compiler to synthesize more complicated (and less frequently used)
operations and addressing modes from these three formats as needed.

[-Type (Immediate)
31 2625 2120 1615 0
op rs rt immediate

J-Type (Jump)
31 26 25 0

op target I

R-Type (Register)

31 26 25 2120 16 15 1110 65 0
op rs rt rd sa |funct
op 6-bit operation code
rs 5-bit source register specifier

5-bit target (source/destination) register or branch

rt condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier
sa 5-bit shift amount

funct 6-bit function field

Figure 2-1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-
dependent; see Appendix A for details of individual Coprocessor 0
instructions.

36 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Summary

Load and Store Instructions

Load and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode
that load and store instructions directly support is base register plus 16-bit
signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the
instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R4000 processor, the instruction immediately following a load
instruction can use the contents of the loaded register, however in such
cases hardware interlocks insert additional real cycles. Consequently,
scheduling load delay slots can be desirable, both for performance and
R-Series processor compatibility. However, the scheduling of load delay
slots is not absolutely required.

Defining Access Types

Access type indicates the size of an R4000 processor data item to be loaded
or stored, set by the load or store instruction opcode. Access types are
defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address given
specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.Jr

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword (shown in
Table 2-1). Only the combinations shown in Table 2-1 are permissible;
other combinations cause address error exceptions. See Appendix A for
individual descriptions of CPU load and store instructions.

t Data formats are described in Chapter 1.

MIPS R4000 Microprocessor User's Manual 37

Chapter 2

Table 2-1 Byte Access within a Doubleword

Access Type
Mnemonic
(Value)

Low Order

Address

Bits

Bytes Accessed
Big endian Little endian
(63 31 0) | (63 31 0)
Byte Byte

Doubleword (7)

Septibyte (6)

Sextibyte (5)

Quintibyte (4)

Word (3)

3
3
3
3
3
3
3
3

3] 3]2]1
4]5]6]7]7]6]5]4]

Triplebyte (2)

3]2]1

4156 [65]4]

516]7]716]5]

Halfword (1)

Byte (0)

PlFRPr|RP[RP[O]j]OC|OC|O|(FR|FRP|O|O|FR|FRP|O|O|FRP|O|OC|OC|OC|OC|OC|O|O]|l N

Rl O|O|RFR|RLR|[O|OC|RL|[O|FRL,|O|O|OC|OC|(OC|OC|O|(R|O|RLR|[|OC|lO|O| Ol +—

R|lO|lFR,|[O|(FR|O|FR,|O|O|O|OC|O|FRP|O|FR,|O|OC|O|FR,|O|O|O|F,|O| O]l ©

38

MIPS R4000 Microprocessor User®s Manual

CPU Instruction Set Summary

Computational Instructions

Computational instructions can be either in register (R-type) format, in
which both operands are registers, or in immediate (I-type) format, in
which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register

values:

arithmetic
logical
shift
multiply
divide

These operations fit in the following four categories of computational
instructions:

64-bit Operations

ALU Immediate instructions
three-Operand Register-Type instructions
shift instructions

multiply and divide instructions

When operating in 64-bit mode, 32-bit operands must be sign extended.
The result of operations that use incorrect sign-extended 32-bit values is
unpredictable.

MIPS R4000 Microprocessor User's Manual 39

Chapter 2

Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the
multiplier as remaining instructions continue through the pipeline; the
product of the multiply instruction is saved in the HI and LO registers.

If the multiply instruction is followed by an MFHI or MFLO before the
productis available, the pipeline interlocks until this product does become
available.

Table 2-2 gives the execution time for integer multiply and divide
operations. The “Total Cycles” column gives the total number of cycles
required to execute the instruction. The “Overlap” column gives the
number of cycles that overlap other CPU operations; that is, the number of
cycles required between the present instruction and a subsequent MFHI or
MFLO without incurring an interlock. If this value is zero, the operation
is not performed in parallel with any other CPU operation.

Table 2-2 Multiply/Divide Instruction Cycle Timing

Instruction Total Cycles Overlap
MULT 12 10
MULTU 12 10
DIV 75
DIVU 75
DMULT 20 18
DMULTU 20 18
DDIV 139
DDIVU 139

For more information about computational instructions, refer to the
individual instruction as described in Appendix A.

40

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Summary

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All
jump and branch instructions occur with a delay of one instruction: that is,
the instruction immediately following the jump or branch (this is known
as the instruction in the delay slot) always executes while the target
instruction is being fetched from storage.T

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with
Jump orJump and Link instructions, both of which are J-type instructions.
In J-type format, the 26-bit target address shifts left 2 bits and combines
with the high-order 4 bits of the current program counter to form an
absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented
with the Jump Register or Jump and Link Register instructions. Both are
R-type instructions that take the 32-bit or 64-bit byte address contained in
one of the general purpose registers.

For more information about jump instructions, refer to the individual
instruction as described in Appendix A.

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit offset (shifted left
2 bits and sign-extended to 32 bits). All branches occur with a delay of one
instruction.

If a conditional branch likely is not taken, the instruction in the delay slot
is nullified.

For more information about branch instructions, refer to the individual
instruction as described in Appendix A.

t Taken branches have a 3 cycle penalty in this implementation. See Chapter 3 for more
information.

MIPS R4000 Microprocessor User's Manual 41

Chapter 2

Special Instructions

Special instructions allow the software to initiate traps; they are always
R-type. For more information about special instructions, refer to the
individual instruction as described in Appendix A.

Exception Instructions

Exception instructions are extensions to the MIPS ISA. For more
information about exception instructions, refer to the individual
instruction as described in Appendix A.

Coprocessor Instructions

Coprocessor instructions perform operations in their respective
coprocessors. Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.

Individual coprocessor instructions are described in Appendices A (for
CPO0) and B (for the FPU, CP1).

CPO instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor. Appendix A details CP0
instructions.

42

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

This chapter describes the basic operation of the CPU pipeline, which
includes descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4400 implementation of an
uncached store buffer.

The FPU pipeline is described in Chapter 6.

MIPS R4000 Microprocessor User's Manual 43

Chapter 3

3.1 CPU Pipeline Operation

The CPU has an eight-stage instruction pipeline; each stage takes one
PCycle (one cycle of PClock, which runs at twice the frequency of
MasterClock). Thus, the execution of each instruction takes at least eight
PCycles (four MasterClock cycles). An instruction can take longer—for
example, if the required data is not in the cache, the data must be retrieved

from main memory.

Once the pipeline has been filled, eight instructions are executed
simultaneously. Figure 3-1 shows the eight stages of the instruction
pipeline; the next section describes the pipeline stages.

PCycle

‘ MasterClock ‘ ‘ (8-Deep)

Cycle

[IF] IS|RF| EX| DF| DS| TC | WB

| IF[IS][RF]EX]|DF| DS | TC

| IF [IS|RF] EX]| DF | DS

| IF] IS| RF| EX| DF

WB |
TC | WB |
DS | TC | WB |

[IF] IS | RF| EX

DF | DS | TC [WB |

[IF] IS |RF

EX| DF| DS |TC [WB]

[IF| IS

RF| EX|DF | DS | TC | WB|

IF

IS | RF|EX| DF [DS | TC [WB]

Current
CPU
Cycle

Figure 3-1 Instruction Pipeline Stages

44

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

3.2 CPU Pipeline Stages

This section describes each of the eight pipeline stages:

IF - Instruction Fetch, First Half
IS - Instruction Fetch, Second Half
RF - Register Fetch

EX - Execution

DF - Data Fetch, First Half

DS - Data Fetch, Second Half

TC - Tag Check

WB - Write Back

IF - Instruction Fetch, First Half

During the IF stage, the following occurs:

Branch logic selects an instruction address and the instruction
cache fetch begins.

The instruction translation lookaside buffer (ITLB) begins the
virtual-to-physical address translation.

IS - Instruction Fetch, Second Half

During the IS stage, the instruction cache fetch and the virtual-to-physical
address translation are completed.

RF - Register Fetch

During the RF stage, the following occurs:

The instruction decoder (IDEC) decodes the instruction and
checks for interlock conditions.

The instruction cache tag is checked against the page frame
number obtained from the ITLB.

Any required operands are fetched from the register file.

MIPS R4000 Microprocessor User's Manual 45

Chapter 3

EX - Execution

During the EX stage, one of the following occurs:

The arithmetic logic unit (ALU) performs the arithmetic or
logical operation for register-to-register instructions.

The ALU calculates the data virtual address for load and store
instructions.

The ALU determines whether the branch condition is true and
calculates the virtual branch target address for branch
instructions.

DF - Data Fetch, First Half

During the DF stage, one of the following occurs:

The data cache fetch and the data virtual-to-physical
translation begins for load and store instructions.

The branch instruction address translation and translation
lookaside buffer (TLB)Jr update begins for branch instructions.

No operations are performed during the DF, DS, and TC stages
for register-to-register instructions.

DS - Data Fetch, Second Half

During the DS stage, one of the following occurs:

The data cache fetch and data virtual-to-physical translation
are completed for load and store instructions. The Shifter
aligns data to its word or doubleword boundary.

The branch instruction address translation and TLB update are
completed for branch instructions.

TC - Tag Check

For load and store instructions, the cache performs the tag check during
the TC stage. The physical address from the TLB is checked against the
cache tag to determine if there is a hit or a miss.

T The TLB is described in Chapter 4.

46

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

WB - Write Back

For register-to-register instructions, the instruction result is written back
to the register file during the WB stage. Branch instructions perform no
operation during this stage.

Figure 3-2 shows the activities occurring during each ALU pipeline stage,
for load, store, and branch instructions.

Cock —_/ \/ ./ /S

Phase | 1| 2| 1| 2| 1|2 1|2|r|2|a]2]1]2]1]2]

Stage [IF IS RF EX DF DS TC WB |
IC1 Ic2 |

IFetch ITLB1 _ ITLB2 __ITC

and IDEC
Decode RE

ALU ALU |
Load/Store DVA DC1 DC2

[LSA
JTLB1 JTLB2 DTC WB |

Branch IVA

IC1 Instruction cache access stage 1

IC2 Instruction cache access stage 2

ITLB1 Instruction address translation stage 1

ITLB2 Instruction address translation stage 2

ITC Instruction tag check

IDEC Instruction decode

RF Register operand fetch

ALU Operation

DVA Data virtual address calculation

DC1 Data cache access stage 1

DC2 Data cache access stage 2

LSA Data load or store align

JTLB1 Data/Instruction address translation stage 1

JTLB2 Data/Instruction address translation stage 2

DTC Data tag check

IVA Instruction virtual address calculation

WB Write back to register file

Figure 3-2 CPU Pipeline Activities

MIPS R4000 Microprocessor User's Manual 47

Chapter 3

3.3 Branch Delay

The CPU pipeline has a branch delay of three cycles and a load delay of
two cycles. The three-cycle branch delay is a result of the branch
comparison logic operating during the EX pipeline stage of the branch,

producing an instruction address that is available in the IF stage, four
instructions later.

Figure 3-3 illustrates the branch delay.

branch | IF | IS | RF| EX| DF| DS| TC| WB |

| IF | 1s| RF| EX| DF | DS| TC | wB]|

\ three branch
[IF [1s [|\RF[Ex[DF [DS| Tc|wB] delay
\ Instructions
| IF [|is | RF| EX| DF | Ds| Tc | wB|

target

-

ﬁIF | Is | RF| EX | DF| DS| TC|wB |
Branch Delay ‘

Figure 3-3 CPU Pipeline Branch Delay

3.4 Load Delay

The completion of a load at the end of the DS pipeline stage produces an

operand that is available for the EX pipeline stage of the third subsequent
instruction.

Figure 3-4 shows the load delay of two pipeline stages.

load | IF | 1S |RF| EX| DF| DS] TC| wB |

| IF [1s | RF| EX| DF| Bs| TC | wB| two load
delay
| IF | 1s | RF| EX| DF | DS| TC | WB | instructions
f(load) | IF | 1s| RF| EX| DF | DS| TC| WB|
‘ Load ‘
Delay

Figure 3-4 CPU Pipeline Load Delay

48 MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

3.5 Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

As shown in Figure 3-5, all interlock and exception conditions are
collectively referred to as faults.

Faults

Software Hardware

Exceptions I Interlocks I
Stalls I Slips I

Figure 3-5 Interlocks, Exceptions, and Faults

There are two types of interlocks:
< stalls, which are resolved by halting the pipeline

= slips, which require one part of the pipeline to advance while
another part of the pipeline is held static

Ateach cycle, exception and interlock conditions are checked for all active
instructions.

Because each exception or interlock condition corresponds to a particular
pipeline stage, a condition can be traced back to the particular instruction
in the exception/interlock stage, as shown in Figure 3-6. For instance, an
Illegal Instruction (I1) exception is raised in the execution (EX) stage.

Tables 3-1 and 3-2 describe the pipeline interlocks and exceptions listed in
Figure 3-6.

MIPS R4000 Microprocessor User's Manual 49

Chapter 3

cosk T\ T\

PCycle | 1 |2 | 1|2 2| 2]1]2|1]|2]r|2]|1|2]1]2]

Pipeline Stage
State
IF IS RF EX DF DS TC WB
IT™M ICM CPBE DCM
Stall* SXT WA
STI
*MP stalls can occur at any stage; they are not associated with any instruction or pipe stage
IF 1S RF EX DF DS TC WB
LDl
MultB
slip DivB
MDOne
ShSlip
FCBsy
IF IS RF EX DF DS TC WB
ITLB Intr OVF DTLB DBE
IBE FPE TLBMod| Watch
IVACoh ExTrap DVACoh
Exceptions ! DECCET
BP NMI
SC Reset
Cun
IECCErr

Figure 3-6 Correspondence of Pipeline Stage to Interlock Condition

50

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

Table 3-1 Pipeline Exceptions

Exception Description
ITLB Instruction Translation or Address Exception
Intr External Interrupt
IBE IBus Error
IVACoh IVA Coherent
I Illegal Instruction
BP Breakpoint
SC System Call
CUn Coprocessor Unusable
IECCErr Instruction ECC Error
OVF Integer Overflow
FPE FP Interrupt
ExTrap EX Stage Traps
DTLB Data Translation or Address Exception
TLBMod TLB Modified
DBE Data Bus Error
Watch Memory Reference Address Compare
DVACoh DVA Coherent
DECCErr Data ECC Error
NMI Non-maskable Interrupt
Reset Reset

MIPS R4000 Microprocessor User's Manual 51

Chapter 3

Table 3-2 Pipeline Interlocks

Interlock

Description

IT™

Instruction TLB Miss

ICM

Instruction Cache Miss

CPBE

Coprocessor Possible Exception

SXT

Integer Sign Extend

STI

Store Interlock

DCM

Data Cache Miss

WA

Watch Address Exception

LDI

Load Interlock

MultB

Multiply Unit Busy

DivB

Divide Unit Busy

MDOne

Mult/Div One Cycle Slip

shslip

Var Shift or Shift > 32 bits

FCBsy

FP Busy

Exception Conditions

When an exception condition occurs, the relevant instruction and all those
that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a

cancelled instruction.

After instruction cancellation, a new instruction stream begins, starting
execution at a predefined exception vector. System Control Coprocessor
registers are loaded with information that identifies the type of exception
and auxiliary information such as the virtual address at which translation
exceptions occur.

52

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

Stall Conditions

Often, a stall condition is only detected after parts of the pipeline have
advanced using incorrect data; this is called a pipeline overrun. When a stall
condition is detected, all eight instructions—each different stage of the
pipeline—are frozen at once. In this stalled state, no pipeline stages can
advance until the interlock condition is resolved.

Once the interlock is removed, the restart sequence begins two cycles
before the pipeline resumes execution. The restart sequence reverses the
pipeline overrun by inserting the correct information into the pipeline.

Slip Conditions

When a slip condition is detected, pipeline stages that must advance to
resolve the dependency continue to be retired (completed), while
dependent stages are held until the required data is available.

External Stalls

External stall is another class of interlocks. An external stall originates
outside the processor and is not referenced to a particular pipeline stage.
This interlock is not affected by exceptions.

Interlock and Exception Timing

To prevent interlock and exception handling from adversely affecting the
processor cycle time, the R4000 processor uses both logic and circuit
pipeline techniques to reduce critical timing paths. Interlock and
exception handling have the following effects on the pipeline:

= In some cases, the processor pipeline must be backed up
(reversed and started over again from a prior stage) to recover
from interlocks.

< |n some cases, interlocks are serviced for instructions that will
be aborted, due to an exception.

These two cases are discussed below.

MIPS R4000 Microprocessor User's Manual 53

Chapter 3

Backing Up the Pipeline

An example of pipeline back-up occurs in a data cache miss, in which the
late detection of the miss causes a subsequent instruction to compute an
incorrect result.

When this occurs, not only must the cache miss be serviced but the EX
stage of the dependent instruction must be re-executed before the pipeline
can be restarted. Figure 3-7 illustrates this procedure; a minus (-) after
the pipeline stage descriptor (for instance, EX-) indicates the operation
produced an incorrect result, while a plus (+) indicates the successful
re-execution of that operation.

Cycle ‘ Run ‘ Run‘ Run‘ Run‘ Run‘ Run‘ Run ‘ Stl ‘ Stl ‘ Stl ‘ Stl ‘ Stl ‘ Run ‘ Run ‘ Run ‘ Run‘ Run ‘

resat | [[| [| [| [[esefmea] | [[[|

Load \lF\ls\RF\Ex\DF\Ds\Tc\ \DF\DS\TC\WB\

|
\lF\ls\RF\Ex\DF\Ds\ \ \ \DF\DS\TC\WB\
|

ALU | F | 1s | RF] x| DF | | [|oF|ps|Tc|ws]
L F[s|relex] [| [re|ex+|oF |ps|Tc|wa|
‘IF‘IS‘RF‘ \ \ \ \ \EX\DF\DS\TC\WB\

Figure 3-7 Pipeline Overrun

54

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

Aborting an Instruction Subsequent to an Interlock

The interaction between an integer overflow and an instruction cache miss
is an example of an interlock being serviced for an instruction that is
subsequently aborted.

In this case, pipelining the overflow exception handling into the DF stage
allows an instruction cache miss to occur on the next immediate
instruction. Figure 3-8 illustrates this; aborted instructions are indicated
with an asterisk (*).

Cycle ‘ Run ‘ Run‘ Run‘ Run‘ Stl ‘ Stl ‘ Stl ‘ Stl ‘ Stl ‘Run ‘Run ‘Run ‘ Run ‘ Run ‘ Run ‘ Run‘
Stall ‘ ‘ ‘ ‘ ‘ InstrCacheMiss ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Resat || | | | [| [Refrsu] [[[[[[|
ALU [F|is|rr[ex] | [| | [oF]ps]Tc|wer
[ovE]
L F[is|rRE[[[F[s|rF]Ex|DF|Ds|TC |wer
‘IF‘IS‘ ‘ ‘ ‘IF‘IS‘RF‘EX‘DF‘DS‘TC‘WB*
‘IF‘ ‘ ‘ ‘ ‘IF‘IS‘RF‘EX‘DF‘DS‘TC‘WB*‘

Figure 3-8 Instruction Cache Miss

Even though the line brought in by the instruction cache could have been
replaced by a line of the exception handler, no performance loss occurs,
since the instruction cache miss would have been serviced anyway, after
returning from the exception handler. Handling of the exception is done
in this fashion because the frequency of an exception occurring is, by
definition, relatively low.

MIPS R4000 Microprocessor User's Manual 55

Chapter 3

Pipelining the Exception Handling

Pipelining of interlock and exception handling is done by pipelining the
logical resolution of possible fault conditions with the buffering and
distributing of the pipeline control signals.

In particular, a half clock period is provided for buffering and distributing
the run control signal; during this time the logic evaluation to produce run
for the next cycle begins. Figure 3-9 shows this process for a sequence of
loads.

Loadl: | DF [DS [TC | WwB |

[TagCk| Resolve [Buffer |

Load2: | DF | DS | TC | WB |

[TagCk| Resolve [Buffer |

Load3: [__DF I DS [TC [WB |

[TagCk] Resolve [Buffer]

Figure 3-9 Pipelining of Interlock and Exception Handling

56 MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

The decision whether or not to advance the pipeline is derived from these
three rules:

All possible fault-causing events, such as cache misses,
translation exceptions, load interlocks, etc., must be
individually evaluated.

The fault to be serviced is selected, based on a predefined

priority as determined by the pipeline stage of the asserted
faults.

Pipeline advance control signals are buffered and distributed.
Figure 3-10 illustrates this process.

Clock —_/—_/—_/—\—
Phase | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Cycle | Run [Run [Run | Run |
[Evaluate | Resolve | Buffer |
[Evaluate | Resolve | Buffer |
[Evaluate | Resolve | Buffer |

Figure 3-10 Pipeline Advance Decision

MIPS R4000 Microprocessor User's Manual 57

Chapter 3

Special Cases

In some instances, the pipeline control state machine is bypassed. This
occurs due to performance considerations or to correctness
considerations, which are described in the following sections.

Performance Considerations

A performance consideration occurs when there is a cache load miss. By
bypassing the pipeline state machine, it is possible to eliminate up to two
cycles of load miss latency. Two techniques, address acceleration and
address prediction, increase performance.

Address Acceleration

Address acceleration bypasses a potential cache miss address. Itis relatively
straightforward to perform this bypass since sending the cache miss
address to the secondary cache has no negative impact even if a
subsequent exception nullifies the effect of this cache access. Power is
wasted when the miss is inhibited by some fault, but this is a minor effect.

Address Prediction

Another technique used to reduce miss latency is the automatic increment
and transmission of instruction miss addresses following an instruction
cache miss. This form of latency reduction is called address prediction: the
subsequent instruction miss address is predicted to be a simple increment
of the previous miss address. Figure 3-11 shows a cache miss in which the
cache miss address is changed based on the detection of the miss.

Cycle ‘Run‘Run‘ Run‘ Run‘ Run‘ Run‘Run‘ St ‘ St ‘ St ‘ Stl ‘ Stl ‘ Stl ‘ Stl ‘ Stl ‘Run‘

Address >< Cache Index ><
Restart ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘Rsts‘ Rst2‘ Rstl‘ ‘
Load [[is [re|ex|oF[Ds|[tc] [[| | [of[ps|[tc|ws]

Figure 3-11 Load Address Bypassing

Correctness Considerations

An example in which bypassing is necessary to guarantee correctness is a
cache write.

58

MIPS R4000 Microprocessor User's Manual

The CPU Pipeline

3.6 R4400 Processor Uncached Store Buffer

The R4400 processor contains an uncached store buffer to improve the
performance of uncached stores over that available from an R4000
processor. When an uncached store reaches the write-back (WB) stage in
the CPU pipeline, the CPU must stall until the store is sent off-chip. In the
R4400 processor, a single-entry buffer stores this uncached WB-stage data
on the chip without stalling the pipeline.

If a second uncached store reaches the WB stage in the R4400 processor

before the first uncached store has been moved off-chip, the CPU stalls
until the store buffer completes the first uncached store. To avoid this
stall, the compiler can insert seven instruction cycles between the two
uncached stores, as shown in Figure 3-12. A single instruction that
requires seven cycles to complete could be used in place of the seven No

Operation (NOP) instructions.

SW R2, (r3) # uncached store
NOP #NOP 1
NOP # NOP 2
NOP # NOP 3
NOP # NOP 4
NOP #NOP 5
NOP # NOP 6
NOP # NOP 7
SW R2, (R3) # uncached store

Figure 3-12 Pipeline Sequence for Back-to-Back Uncached Stores

If the two uncached stores execute within a loop, the two killed
instructions which are part of the loop branch latency are included in the
count of seven interpolated cycles. Figure 3-13 shows the four NOP
instructions that need to be scheduled in this case.

MIPS R4000 Microprocessor User's Manual

59

Chapter 3

Loop:

SW R2, (R3) # uncached store
NOP

NOP

NOP

B Loop # branch to loop

NOP

killed # branch latency
killed # branch latency

Figure 3-13 Back-to-Back Uncached Stores in a Loop

The timing requirements of the System interface govern the latency
between uncached stores; back-to-back stores can be sent across the
interface at a maximum rate of one store for every four external cycles. If
the R4400 processor is programmed to run in divide-by-2 mode (for more
information about divided clock, see the description of SClock in Chapter
10), an uncached store can occur every eight pipeline cycles. If a larger
clock divisor is used, more pipeline cycles are required for each store.

CAUTION: The R4000 processor always had a strongly-ordered
execution; however, with the addition of the uncached store buffer in
the R4400 there is a potential for out-of-order execution (described in
the section of the same name in Chapter 11, and Uncached Loads or
Stores in Chapter 12).

60

MIPS R4000 Microprocessor User's Manual

Memory Management

The MIPS R4000 processor provides a full-featured memory management
unit (MMU) which uses an on-chip translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address spaces,
the virtual-to-physical address translation, the operation of the TLB in
making these translations, and those System Control Coprocessor (CP0)
registers that provide the software interface to the TLB.

MIPS R4000 Microprocessor User's Manual 61

Chapter 4

4.1 Translation Lookaside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using an
on-chip TLB." The TLBisa fully associative memory that holds 48 entries,
which provide mapping to 48 odd/even page pairs (96 pages). When
address mapping is indicated, each TLB entry is checked simultaneously
for a match with the virtual address that is extended with an ASID stored
in the EntryHi register.

The address mapped to a page ranges in size from 4 Kbytes to 16 Mbytes,
in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to form

the physical address (see Figure 4-1).
If no match occurs (TLB miss), an exception is taken and software refills

the TLB from the page table resident in memory. Software can write over
aselected TLB entry or use a hardware mechanism to write into a random

entry.

Multiple Matches

If more than one entry in the TLB matches the virtual address being
translated, the operation is undefined. To prevent permanent damage to
the part, the TLB may be disabled if more than several entries match. The
TLB-Shutdown (TS) bit in the Status register is set to 1 if the TLB is
disabled.

t There are virtual-to-physical address translations that occur outside of the TLB. For
example, addresses in the kseg0 and ksegl spaces are unmapped translations. In these
spaces the physical address is derived by subtracting the base address of the space from

the virtual address.

62

MIPS R4000 Microprocessor User's Manual

Memory Management

4.2 Address Spaces

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

Virtual Address Space

The processor virtual address can be either 32 or 64 bits wide, " depending
on whether the processor is operating in 32-bit or 64-bit mode.

« |n 32-bit mode, addresses are 32 bits wide. The maximum user
process size is 2 gigabytes (2°1).

< |n 64-bit mode, addresses are 64 bits wide. The maximum user
process size is 1 terabyte (2%7).

Figure 4-1 shows the translation of a virtual address into a physical
address.

Virtual address
1. Virtual address (VA) represented by the

virtual page number (VPN) is compared G ASID VPN Offset
with tag in TLB.

2. If there is a match, the page frame G ASID VPN
number (PFN) representing the upper
bits of the physical address (PA) is TLB
output from the TLB. Entry

PFN

TLB \

3. The Offset, which does not pass through

the TLB, is then concatenated to the PFN. PEN Offset I

Physical address

Figure 4-1 Overview of a Virtual-to-Physical Address Translation

t Figure 4-8 shows the 32-bit and 64-bit versions of the processor TLB entry.

MIPS R4000 Microprocessor User's Manual 63

Chapter 4

As shown in Figures 4-2 and 4-3, the virtual address is extended with an

8-bit address space identifier (ASID), which reduces the frequency of TLB
flushing when switching contexts. This 8-bit ASID is in the CP0O EntryHi

register, described later in this chapter. The Global bit (G) is in the EntryLo0
and EntryLol registers, described later in this chapter.

Physical Address Space

Using a 36-bit address, the processor physical address space encompasses
64 gigabytes. The section following describes the translation of a virtual
address to a physical address.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual addresses in the
TLB; there is a match when the virtual page number (VPN) of the address
is the same as the VPN field of the entry, and either:

« the Global (G) bit of the TLB entry is set, or

< the ASID field of the virtual address is the same as the ASID
field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the
TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the Offset, which represents
an address within the page frame space. The Offset does not pass through
the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter; Figure 4-20 is a flow diagram of the process
shown at the end of this chapter.

The next two sections describe the 32-bit and 64-bit address translations.

64

MIPS R4000 Microprocessor User's Manual

Memory Management

32-bit Mode Address Translation
Figure 4-2 shows the virtual-to-physical-address translation of a 32-bit

mode address.

The top portion of Figure 4-2 shows a virtual address with a
12-bit, or 4-Kbyte, page size, labelled Offset. The remaining 20
bits of the address represent the VPN, and index the 1M-entry

page table.

The bottom portion of Figure 4-2 shows a virtual address with
a 24-bit, or 16-Mbyte, page size, labelled Offset. The remaining
8 bits of the address represent the VPN, and index the 256-

entry page table.

Virtual Address with 1M (2 29) 4-Kbyte pages
12 11 0

39 3231 29 28 20 bits = 1M pages

VPN

8 20
N J
Y
Virtual-to-physical Offset passed
translation in TLB unchanged to
Bits 31, 30 and 29 of the virtual physical
address select user, supervisor, 36-bit Physical Address memory
or kernel address spaces.
35 0
| PFN Offset I
Virtual-to-physical
translation in TLB Sﬁfﬁ;npgis;?g
physical
A /\ memory
M\ \Yel M
39 3231 2928 24 23 0
ASID VPN Offset
8 24

8
8 bits = 256 pages
Virtual Address with 256 (2 ®)16-Mbyte pages

Figure 4-2 32-bit Mode Virtual Address Translation

MIPS R4000 Microprocessor User's Manual 65

Chapter 4

64-bit Mode Address Translation

Figure 4-3 shows the virtual-to-physical-address translation of a 64-bit
mode address. This figure illustrates the two extremes in the range of
possible page sizes: a 4-Kbyte page (12 bits) and a 16-Mbyte page (24 bits).

< The top portion of Figure 4-3 shows a virtual address with a
12-bit, or 4-Kbyte, page size, labelled Offset. The remaining 28
bits of the address represent the VPN, and index the 256 M-
entry page table.

= The bottom portion of Figure 4-3 shows a virtual address with
a 24-bit, or 16-Mbyte, page size, labelled Offset. The remaining
16 bits of the address represent the VPN, and index the 64K-
entry page table.

Virtual Address with 256M (2 28) 4-Kbyte pages

71 64 636261 40 39 28 bits = 256M pages 12 11 0

VPN

24 12

M\ J
Offset passed
Virtual-to-physical Yun‘:hanpged to
translation in TLB l physical

“[eK

Bits 62 and 63 of the virtual_ 36-bit Physical Address memory
address select user, supervisor, 35 0
or kernel address spaces.
PFN Offset
)) Offset passed
Virtual-to-physical unchanged to
translation in TLB physical
TLB memory
AN AL
y Y ~
71 64 6362 61 4039 24 23 0
ASID Oor-1 VPN Offset
8 24 16 24

16 bits = 64K pages
Virtual Address with 64K (2 6)16-Mbyte pages

Figure 4-3 64-bit Mode Virtual Address Translation

66 MIPS R4000 Microprocessor User's Manual

Memory Management

Operating Modes

The processor has three operating modes that function in both 32- and 64-
bit operations:

= User mode

e Supervisor mode

< Kernel mode

These modes are described in the next three sections.

User Mode Operations

In User mode, a single, uniform virtual address space—labelled User
segment—is available; its size is:

- 2 Gbytes (2°! bytes) in 32-bit mode (useg)

e 1 Thyte (240 bytes) in 64-bit mode (xuseg)

Figure 4-4 shows User mode virtual address space.

32-bit* 64-hit
Ox A A Ox FFFF FFF FF FF
Address Address
Error Error
Ox 8000 0000 Ox 0000 0100 00 00 0000
2GB 1TB
useg xuseg
Mapped Mapped
0Ox 0000 0000 0x 0000 0000 0000 0000

Figure 4-4 User Mode Virtual Address Space

*NOTE: The R4000 uses 64-bit addresses internally. When the kernel
is running in Kernel mode, it initializes registers before switching
modes, and saves (or restores, whichever is appropriate) register
values on context switches. In 32-bit mode, a valid address must be a
32-bit signed number, where bits 63:32 = bit 31. In normal operation
it is not possible for a 32-bit User-mode program to produce invalid
addresses. However, although it would be an error, it is possible for a
Kernel-mode program to erroneously place a value that is not a 32-bit
signed number into a 64-bit register, in which case the User-mode
program generates an invalid address.

MIPS R4000 Microprocessor User's Manual 67

Chapter 4

The User segment starts at address 0 and the current active user process
resides in either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB
identically maps all references to useg/xuseg from all modes, and controls
cache accessibility.

The processor operates in User mode when the Status register contains the
following bit-values:

= KSU bits = 10,

e EXL=0

e ERL=0
In conjunction with these bits, the UX bit in the Status register selects
between 32- or 64-bit User mode addressing as follows:

= when UX = 0, 32-bit useg space is selected and TLB misses are
handled by the 32-bit TLB refill exception handler

= when UX =1, 64-bit xuseg space is selected and TLB misses are
handled by the 64-bit XTLB refill exception handler

Table 4-1 lists the characteristics of the two user mode segments, useg and
XUseg.

Table 4-1 32-bit and 64-bit User Mode Segments

) Status Register
Address Bit Bit VValues Segment Address Range Segment Size
Values Name
KSU|EXL |ERL| UX
hi 0x0000 0000
32 b'_t 10, | O 0 0 | useg through 2316 byte
A@31) =0 OX7FFF FFFF (2% bytes)
hi 0x0000 0000 0000 0000
A 6634 4%"[_ 0 10, | O 0 1 | xuseg through 2%1(;- kk)) y;c €
(63:40) = 0x0000 00FF FFFF FFFF | (27 bytes)

t The cached (C) field in a TLB entry determines whether the reference is cached; see Figure

4-8.

68

MIPS R4000 Microprocessor User's Manual

Memory Management

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing
is compatible with the 32-bit addressing model shown in Figure 4-4, and a
2-Gbyte user address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit
cleared to 0; any attempt to reference an address with the most-significant
bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings
within the TLB entry for the page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX =1 in the Status register, User mode addressing is
extended to the 64-bit model shown in Figure 4-4. In 64-bit User mode, the
processor provides a single, uniform address space of 2% bytes, labelled
XUSeg.

All valid User mode virtual addresses have bits 63:40 equal to 0; an
attempt to reference an address with bits 63:40 not equal to 0 causes an
Address Error exception.

Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a
true kernel runs in R4000 Kernel mode, and the rest of the operating
system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

- KSU =01,
- EXL=0
- ERL=0

In conjunction with these bits, the SX bit in the Status register selects
between 32- or 64-bit Supervisor mode addressing:

< when SX =0, 32-bit supervisor space is selected and TLB
misses are handled by the 32-bit TLB refill exception handler

< when SX = 1, 64-bit supervisor space is selected and TLB
misses are handled by the 64-bit XTLB refill exception handler

MIPS R4000 Microprocessor User's Manual 69

Chapter 4

Ox A A
Ox EOCO 0000

Ox G000 0000

Ox ADOO 0000

Ox 8000 0000

Ox 0000 0000

Figure 4-5 shows Supervisor mode address mapping. Table 4-2 lists the
characteristics of the supervisor mode segments; descriptions of the

address spaces follow.

32-bit*
Address

error

0.5GB
Mapped

Address
error

Address
error

2GB
Mapped

Figure 4-5 Supervisor Mode Address Space

sseg

suseg

Ox A A A A
Ox A A E000 0000

Ox A HH G000 0000

Ox 4000 0100 0000 0000

Ox 4000 0000 0000 0000

Ox 0000 0100 0000 0000

Ox 0000 0000 0000 0000

64-bit
Address
error

0.5GB
Mapped

Address
error

1TB
Mapped

csseg

xsseg

Address
error

1TB

Mapped xsuseg

*NOTE: The R4000 uses 64-bit addresses internally. In 32-bit mode,
a valid address must be a 32-bit signed number, where bits 63:32 = bit
31. In normal operation itis not possible for a 32-bit Supervisor-mode
program to create an invalid address through arithmetic operations.
However 32-bit-mode Supervisor programs must not create addresses
using base register+offset calculations that produce a 32-bit 2’s-
complement overflow; in specific, there are two prohibited cases:

= offset with bit 15 = 0 and base register with bit 31 = 0, but (base
register+offset) bit 31 =1

= offset with bit 15 = 1 and base register with bit 31 = 1, but (base
register+offset) bit 31 =0

Using this invalid address produces an undefined result.

70

MIPS R4000 Microprocessor User's Manual

Memory Management

Table 4-2 32-bit and 64-bit Supervisor Mode Segments

) Status Register
Address Bit Bit VValues Segment Address Range Seg_ment
Values Name Size
KSU|EXL |ERL|sX
. 0x0000 0000
32-bit 0L,| 0 | 0 |0 |suseg through 2 Gbytes
ABD =0 OX7FFF FFFF (27" bytes)
. 0xC000 0000
32-bit 512 Mbytes
01 0 0 | O | ssse through
A(31:29) = 110, | ° 2 g OXDEFE gFFFF (2% bytes)
. 0x0000 0000 0000 0000
A(egég_zl;t 00, |0l2| O | O | 1 |xsuseg through (2%'— E;/tt:s)
' 2 0x0000 00FF FFFF FFFF
. 0x4000 0000 0000 0000
A(Gss_g'zt)"f or, |012] 0 [0 |1 |xsseg through (ZﬁoT Eyttees)
00) =55 0x4000 00FF FFFF FFFF y
S4.bit OXFFFF FFFF C000 0000 [1y oo
A(63:62) = 11 01, O 0 | 1 |csseg through (229 bytes)
' 2 OXFFFF FFFF DFFF FFFF

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-
significant bit of the 32-bit virtual address is set to 0, the suseg virtual
address space is selected; it covers the full 23! bytes (2 Gbytes) of the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through
OX7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX =0 in the Status register and the three most-
significant bits of the 32-bit virtual address are 110,, the sseg virtual
address space is selected; it covers 229-bytes (512 Mbytes) of the current
supervisor address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs
through OXDFFF FFFF.

MIPS R4000 Microprocessor User's Manual

71

Chapter 4

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX =1 in the Status register and bits 63:62 of the
virtual address are set to 00,, the xsuseg virtual address space is selected;
it covers the full 240 bytes (1 Thyte) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and
runs through 0x0000 00FF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX =1 in the Status register and bits 63:62 of the
virtual address are set to 01,, the xsseg current supervisor virtual address
space is selected. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and
runs through 0x4000 00FF FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseq)

In Supervisor mode, when SX =1 in the Status register and bits 63:62 of the
virtual address are set to 11,, the csseg separate supervisor virtual address
space is selected. Addressing of the csseg is compatible with addressing
sseg in 32-bit mode. The virtual address is extended with the contents of
the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxFFFF FFFF C000 0000 and
runs through OXFFFF FFFF DFFF FFFF.

72

MIPS R4000 Microprocessor User's Manual

Memory Management

Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains
one of the following values:

- KSU =00,
- EXL=1
- ERL=1

In conjunction with these bits, the KX bit in the Status register selects
between 32- or 64-bit Kernel mode addressing:

= when KX =0, 32-bit kernel space is selected and all TLB misses
are handled by the 32-bit TLB refill exception handler

= when KX =1, 64-bit kernel space is selected and all TLB misses
are handled by the 64-bit XTLB refill exception handler

The processor enters Kernel mode whenever an exception is detected and
it remains in Kernel mode until an Exception Return (ERET) instruction is
executed. The ERET instruction restores the processor to the mode
existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4-6. Table
4-3 lists the characteristics of the 32-bit kernel mode segments, and Table
4-4 lists the characteristics of the 64-bit kernel mode segments.

MIPS R4000 Microprocessor User's Manual 73

Chapter 4

32-hit* 64-bit
Ox FFFF FFFF O FFFF FRFF FRFF FFF 05 GB
Mapped ckseg3
0.5GB ksega O FFFF FFFF EOD0 010
Mapped _
Ox EO00 0000 PP |\(/|) 5 GBd sksseq
0.5GB Ox FH= A== C000 0000 Oapge
' .5 GB
Mapped ksseg Unmapped ckseg1
Ox CO00 0000 Ox FFFF FFFF A000 0000 | Uncached
0.5 GB Ur?rhSagged ckseg0
Unmapped B ksegz Ox AR FFRF 8000 0000 Cached
ox Ao oo | Uncached Address
0.5GB Ox CO00 OOFF 8000 0000 error
Unmapped W kseg0 Mapped xkseg
0x 8000 0000 Cached Ox CO00 0000 0000 0000
Unmapped xkphys
Ox 8000 0000 0000 0000
Address
Ox 4000 0100 0000 0000 error
2GB 1718 xksseg
kuseg Mapped
Mapped Ox 4000 0000 0000 0000
Address
Ox 0000 0100 0000 0000 error
1TB
Mapped xkuseg
Ox 0000 0000 Ox 0000 0000 (0000 0000

Figure 4-6 Kernel Mode Address Space

*NOTE: The R4000 uses 64-bit addresses internally. In 32-bit mode,
a valid address must be a 32-bit signed number, where bits 63:32 = bit
31; an invalid address produces an undefined result. In 32-bit mode,
a Kernel-mode program may use 64-bit instructions, but must not
create addresses using base register+offset calculations that produce a
32-bit 2’s-complement overflow; in specific, there are two prohibited
cases:

< offset with bit 15 = 0 and base register with bit 31 = 0, but (base
register+offset) bit 31 =1

= offset with bit 15 = 1 and base register with bit 31 = 1, but (base
register+offset) bit 31 =0

74

MIPS R4000 Microprocessor User's Manual

Memory Management

Table 4-3 32-bit Kernel Mode Segments

Status Register
Address Bit Is One Of These | Segment Segment
Values Values Name Address Range Size
KSU[EXL |ERL| KX
0x0000 0000
A@BD=0 0 | kuseg through gg?gytes
OX7FFF FFFF (2° bytes)
0x8000 0000
A(31:29) = 100, 0 | kseg0 through 5?9'\’t')b3t/tes
KSU =00, OX9FFF FFFF (2 bytes)
or 0xA000 0000
A(31:29) = 101, EXL=1 0 | ksegl through 559'\/t|)bytes
or OXBFFF FFFF (27 bytes)
ERL =1 0xC000 0000
A(31:29) = 110, 0 | ksseg through 5239'\/t|)byt95
OXDFFF FFFF (2 bytes)
0XEO000 0000
A(31:29) = 111, 0 | kseg3 through 559'\/t|)byt95
OXFFFF FFFF (2 bytes)

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-
significant bit of the virtual address, A31, is cleared, the 32-bit kuseg virtual
address space is selected:; it covers the full 23 bytes (2 Gbytes) of the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

When ERL =1 in the Status register, the user address region becomes a
231-byte unmapped (that is, mapped directly to physical addresses)
uncached address space. See the Cache Error exception in Chapter 5 for
more information.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the virtual address are 100,, 32-bit kseg0 virtual
address space is selected: it is the 22°-byte (512-Mbyte) kernel physical
space. References to kseg0 are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address. The KO field of the Config register, described in this chapter,
controls cacheability and coherency.

MIPS R4000 Microprocessor User's Manual 75

Chapter 4

32-bit Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 101,, 32-bit ksegl
virtual address space is selected; it is the 229-byte (512-Mbyte) kernel
physical space.

References to ksegl are not mapped through the TLB; the physical address
selected is defined by subtracting 0XxA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory
(or memory-mapped I/0 device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 110,, the ksseg virtual
address space is selected:; it is the current 22-byte (512-Mbyte) supervisor
virtual space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 1115, the kseg3 virtual
address space is selected:; it is the current 22°-byte (512-Mbyte) kernel
virtual space. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

76

MIPS R4000 Microprocessor User's Manual

Memory Management

Table 4-4 64-bit Kernel Mode Segments

Status Register
Address Bit Is One Of These | Segment
Values Values Name

Segment

Address Range Size

KSU[EXL |ERL| KX
0x0000 0000 0000 0000
A(63:62) = 00, 1 | xksuseg through 2%'- tt)) yte
0x0000 00FF FFFF FFFF | (27 bytes)
0x4000 0000 0000 0000
A(63:62) = 01, 1| xksseg through ZﬁoT é’ytte
0x4000 00FF FFFF FFFF | (27 bytes)
0x8000 0000 0000 0000 36.
A(63:62) = 10, 1 | xkphys through 8 27-byte
OXBFFF FFFF FFFF FFFF | SPaces
_ 0xC000 0000 0000 0000 40_,31
A(63:62) = 11, KSUO; 002 | 1 | xkseg through (2b tis)
ExL <1 0xC000 OOFF 7FFF FFFF y
A(63:62) = 11, or 1 | cksego OXFFFF tﬂigﬁ gsé)oo 0000 512Mbytes
A(61:31) =-1 ERL =1 OXFFFF FFFF OFFF FFFF | (27 bytes)
A(63:62) = 11, 1 | ckseqt OXFFFF fhﬁf)fj&‘)oo 0000 512Mbytes
A(61:31) =-1 OXFFFF FFFF BFFF FFFF | (27 bytes)
A(63:62) = 11, 1 | cxsseg OXFFFF chFrZEé:r?OO 0000 512Mbytes
A(61:31) =-1 OXFFFF FFFF DFFF FFFF | (27 bytes)
A(63:62) = 11, 1 | cksega OXFFFF tﬁ]ﬁzigﬁ?oo 0000 512Mbytes
A(61:31) =-1 OXFFFF FFFF FFFF FRFF | (27 bytes)

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX =1 in the Status register and bits 63:62 of the 64-
bit virtual address are 00,, the xkuseg virtual address space is selected,; it
covers the current user address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-
byte unmapped (that is, mapped directly to physical addresses) uncached
address space. See the Cache Error exception in Chapter 5 for more
information.

MIPS R4000 Microprocessor User's Manual 77

Chapter 4

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX =1 in the Status register and bits 63:62 of the 64-
bit virtual address are 01,, the xksseg virtual address space is selected; it is
the current supervisor virtual space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX =1 in the Status register and bits 63:62 of the 64-
bit virtual address are 10,, the xkphys virtual address space is selected; it is
a set of eight 236-byte kernel physical spaces. Accesses with address bits
58:36 not equal to 0 cause an address error.

References to this space are not mapped; the physical address selected is
taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual address
specify the cacheability and coherency attributes, as shown in Table 4-5.

Table 4-5 Cacheability and Coherency Attributes

Value (61:59) Cacheability and Coherency Attributes Starting Address
0 Reserved 0x8000 0000 0000 0000
1 Reserved 0x8800 0000 0000 0000
2 Uncached 0x9000 0000 0000 0000
3 Cacheable, noncoherent 0x9800 0000 0000 0000
4 Cacheable, coherent exclusive 0xA000 0000 0000 0000
5 Cacheable, coherent exclusive on write 0xA800 0000 0000 0000
6 Cacheable, coherent update on write 0xB000 0000 0000 0000
7 Reserved 0xB800 0000 0000 0000

78

MIPS R4000 Microprocessor User's Manual

Memory Management

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX =1 in the Status register and bits 63:62 of the 64-
bit virtual address are 11,, the address space selected is one of the
following:

= kernel virtual space, xkseg, the current kernel virtual space; the
virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address

= one of the four 32-bit kernel compatibility spaces, as described
in the next section.

64-bit Kernel Mode, Compatibility Spaces (cksegl:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit
virtual address are 11,, and bits 61:31 of the virtual address equal -1, the
lower two bytes of address, as shown in Figure 4-6, select one of the
following 512-Mbyte compatibility spaces.

= ckseg0. This 64-bit virtual address space is an unmapped
region, compatible with the 32-bit address model kseg0. The KO
field of the Config register, described in this chapter, controls
cacheability and coherency.

= cksegl. This 64-bit virtual address space is an unmapped and
uncached region, compatible with the 32-bit address model
ksegl.

= cksseg. This 64-bit virtual address space is the current
supervisor virtual space, compatible with the 32-bit address
model ksseg.

= ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

MIPS R4000 Microprocessor User's Manual 79

Chapter 4

4.3 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part
of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CP0 contains the
registers shown in Figure 4-7 plus a 48-entry TLB. The sections that follow
describe how the processor uses the memory management-related

registers’.

Each CPO register has a unique number that identifies it; this number is
referred to as the register number. For instance, the Page Mask register is
register number 5.

EntryLoO
2*

EntryLol
3*

EntryHi
10*

Config
16*

47
TLB
(“Safe” entries)
(See Random Register,
contents of TLB Wired)
o (127 0
LLAddr TaglLo
17* 28*

TagHi
29*

L
[

Used with memory
management system.

*Register number

ECC
26*

Figure 4-7 CPO Registers and the TLB

CacheErr
27*

Index Context BadVAddr
0* 4% 8*
Random Count Compare
1* 9* ik
Page Mask Status Cause
5* 12* 13*
Wired EPC WatchLo
14* 18*
PRId WatchHi XContext
15* 19* 20*

ErrorEPC
30*

Used with exception
processing. See
Chapter 5 for details.

T For a description of CP0 data dependencies and hazards, please see Appendix F.

80

MIPS R4000 Microprocessor User's Manual

Memory Management

Format of a TLB Entry

Figure 4-8 shows the TLB entry formats for both 32- and 64-bit modes.
Each field of an entry has a corresponding field in the EntryHi, EntryLo0,
EntryLol, or PageMask registers, as shown in Figures 4-9 and 4-10; for
example the Mask field of the TLB entry is also held in the PageMask

register.
32-bit Mode
[127 121 120 109 108 %
0 MASK 0 I
7 12 13
95 77 76 75 7271 64
VPN2 G|l O ASID I
128-bit TLB
entry in 32- 19 1 4 8
bit mode of 63 62 61 38 37 35 3433 32
R4000
processor 0 PFN C |D{V|0
2 24 3 111
3130 29 6 5 3210
0 PFEN C |D{V O
\ 2 24 3 111
(64-bit Mode
255 217 216 205 204 192
0 MASK 0 I
39 12 13
191 190 189 168 167 141 140139136 135 128
256-bit TLB R 0 VPN2 G| O ASID I
entry in 64-
bit mode of 2 22 21 1 4 8
R4000 127 94 93 70 69 67666564
processor
0 PFN C (D|{V|0
34 24 3 111
63 30 29 6 5 3210
0 PFN C |D|V|0
\ 7 24 3 111

Figure 4-8 Format of a TLB Entry

MIPS R4000 Microprocessor User's Manual 81

Chapter 4

The format of the EntryHi, EntryLo0O, EntryLol, and PageMask registers are
nearly the same as the TLB entry. The one exception is the Global field
(G bit), which is used in the TLB, but is reserved in the EntryHi register.
Figures 4-9 and 4-10 describe the TLB entry fields shown in Figure 4-8.

PageMask Register

b 31 25 24 13 12 0
32-bit
N 0 MASK 0 |
7 12 13
Mask.....Page comparison mask.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.
EntryHi Register
31 y 9 13 12 8 7 0
32-bit
Mode | VPN2 0 ASID I
19 5 8
63 62 61 40 39 13 12 8 7 0
64-bit
Mode |R FILL VPN2 0 ASID I
2 22 27 5 8
VPN?2 ... Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB;
each process has a distinct mapping of otherwise identical virtual page numbers.
R Region. (00 — user, 01 - supervisor, 11 — kernel) used to match vAddrgs g
Fill Reserved. 0 on read; ignored on write.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.
Figure 4-9 Fields of the PageMask and EntryHi Registers
82

MIPS R4000 Microprocessor User's Manual

Memory Management

31 30 29 EntryLoO and EntryLol Registers 6 5 3210
32-bit
Mode 0 PFN C |[D|V|G I
24 3 111
31 30 29 6 5 321 0
32-bit
Mode 0 PFN C |D|V|G I
24 3 111
63 30 29 6 5 3210
64-bit
Mode 0 PEN C |D| V|G I
34 24 3 111
63 30 29 6 5 3210
64-bit
Mode 0 PEN C |D|V|G I
34 24 3 111
PFN...... Page frame number; the upper bits of the physical address.
Cunnn Specifies the TLB page coherency attribute; see Table 4-6.
D....... Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.
Vi Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS
miss occurs.
(CH— Global. If this bit is set in both LoO and Lol, then the processor ignores the ASID during
TLB lookup.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4-10 Fields of the EntryLo0 and EntryLol Registers

MIPS R4000 Microprocessor User's Manual 83

Chapter 4

The TLB page coherency attribute (C) bits specify whether references to
the page should be cached,; if cached, the algorithm selects between several
coherency attributes. Table 4-6 shows the coherency attributes selected by

the C bits.
Table 4-6 TLB Page Coherency (C) Bit Values
C(5:3) Value Page Coherency Attribute
0 Reserved
1 Reserved
2 Uncached
3 Cacheable noncoherent (noncoherent)
4 Cacheable coherent exclusive (exclusive)
5 Cacheable coherent exclusive on write (sharable)
6 Cacheable coherent update on write (update)
7 Reserved

CPO Registers

The following sections describe the CPO registers, shown in Figure 4-7,
that are assigned specifically as a software interface with memory
management (each register is followed by its register number in
parentheses).

Index register (CPO register number 0)
Random register (1)

EntryLoO (2) and EntryLol (3) registers
PageMask register (5)

Wired register (6)

EntryHi register (10)

PRId register (15)

Config register (16)

LLAddr register (17)

TaglLo (28) and TagHi (29) registers

84

MIPS R4000 Microprocessor User's Manual

Memory Management

Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to
index an entry in the TLB. The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4-11 shows the format of the Index register; Table 4-7 describes the
Index register fields.

Index Register

31 30 6 5 0
P 0 Index I
1 25 6

Figure 4-11 Index Register

Table 4-7 Index Register Field Descriptions

Field Description
p Probe failure. Set to 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful.
Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

MIPS R4000 Microprocessor User's Manual 85

Chapter 4

Random Register (1)

The Random register is a read-only register of which six bits index an entry
in the TLB. This register decrements as each instruction executes, and its
values range between an upper and a lower bound, as follows:

= A lower bound is set by the number of TLB entries reserved for
exclusive use by the operating system (the contents of the
Wired register).

= An upper bound is set by the total number of TLB entries (47
maximum).

The Random register specifies the entry in the TLB that is affected by the
TLB Write Random instruction. The register does not need to be read for
this purpose; however, the register is readable to verify proper operation
of the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound
when the Wired register is written.

Figure 4-12 shows the format of the Random register; Table 4-8 describes
the Random register fields.

Random Register
31 6 5 0

0 Random I

26 6
Figure 4-12 Random Register

Table 4-8 Random Register Field Descriptions

Field Description

Random TLB Random index

Reserved. Must be written as zeroes, and returns zeroes

0 when read.

86 MIPS R4000 Microprocessor User's Manual

Memory Management

EntryLo0 (2), and EntryLol (3) Registers

The EntryLo register consists of two registers that have identical formats:
= EntryLoO is used for even virtual pages.
= EntryLol is used for odd virtual pages.

The EntryLoO and EntryLol registers are read/write registers. They hold
the physical page frame number (PFN) of the TLB entry for even and odd
pages, respectively, when performing TLB read and write operations.
Figure 4-10 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or
writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry, as shown in Table 4-9.

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:13 are used in the comparison. When the Mask
field is not one of the values shown in Table 4-9, the operation of the TLB
is undefined.

Table 4-9 Mask Field Values for Page Sizes

Page Size Bit

24 | 23 | 22 |21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13
4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0
16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1
64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1
256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1
1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1
4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1
16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

MIPS R4000 Microprocessor User's Manual 87

Chapter 4

Wired Register (6)

The Wired register is a read/write register that specifies the boundary
between the wired and random entries of the TLB as shown in Figure 4-13.
Wired entries are fixed, nonreplaceable entries, which cannot be
overwritten by a TLB write operation. Random entries can be overwritten.

TLB
47

!

Range of Random entries

o

< Wired

Range of Wired entries

Register

Figure 4-13 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also
sets the Random register to the value of its upper bound (see Random
register, above). Figure 4-14 shows the format of the Wired register; Table
4-10 describes the register fields.

Wired Register

31 65 0
0 Wired I
26 6
Figure 4-14 Wired Register
Table 4-10 Wired Register Field Descriptions
Field Description
Wired TLB Wired boundary

Reserved. Must be written as zeroes, and returns
zeroes when read.

88

MIPS R4000 Microprocessor User's Manual

Memory Management

EntryHi Register (CP0O Register 10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read
and write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random,
TLB Write Indexed, and TLB Read Indexed instructions.

Figure 4-9 shows the format of this register.

When either a TLB refill, TLB invalid, or TLB modified exception occurs,
the EntryHi register is loaded with the virtual page number (VPN2) and
the ASID of the virtual address that did not have a matching TLB entry.
(See Chapter 5 for more information about these exceptions.)

Processor Revision Identifier (PR1d) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU
and CPO. Figure 4-15 shows the format of the PRId register; Table 4-11
describes the PRId register fields.

PRId Register

31 16 15 87 0
0 Imp Rev

16 8 8

Figure 4-15 Processor Revision Identifier Register Format

Table 4-11 PRId Register Fields

Field Description
Imp Implementation number
Rev Revision number
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

MIPS R4000 Microprocessor User's Manual 89

Chapter 4

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision
number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4000
processor is 0x04. The content of the high-order halfword (bits 31:16) of
the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major
revision number in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there
is no guarantee that changes to the chip will necessarily be reflected in the
PRId register, or that changes to the revision number necessarily reflect
real chip changes. For this reason, these values are not listed and software
should not rely on the revision number in the PRId register to characterize
the chip.

Config Register (16)

The Config register specifies various configuration options selected on
R4000 processors; Table 4-12 lists these options.

Some configuration options, as defined by Config bits 31:6, are set by the
hardware during reset and are included in the Config register as read-only
status bits for the software to access. Other configuration options are
read/write (as indicated by Config register bits 5:0) and controlled by
software; on reset these fields are undefined.

Certain configurations have restrictions. The Config register should be
initialized by software before caches are used. Caches should be written
back to memory before line sizes are changed, and caches should be
reinitialized after any change is made.

Figure 4-16 shows the format of the Config register; Table 4-12 describes
the Config register fields.

Config Register

31 30 28 27 24 2322 2120 19 1817 16 1514 13 1211 9 8 6 5 4 3 2 0

CM

1

EP SB |SS|SW | EW |SC|SM |BE|[EM|EB| 0 | IC DC |IB|DB|CU| KO

4 2 11 2 111111 3 3 111 3

Figure 4-16 Config Register Format

90

MIPS R4000 Microprocessor User's Manual

Memory Management

Table 4-12 Config Register Fields

Field Description

CM Master-Checker Mode (1 — Master/Checker Mode is enabled).

System clock ratio:
0 - processor clock frequency divided by 2
1 - processor clock frequency divided by 3
2 — processor clock frequency divided by 4
3 - processor clock frequency divided by 6 (R4400 processor only)
4 - processor clock frequency divided by 8 (R4400 processor only)

Transmit data pattern (pattern for write-back data):

0-D Doubleword every cycle

1 - DDx 2 Doublewords every 3 cycles
2 - DDxx 2 Doublewords every 4 cycles
3 - DxDx 2 Doublewords every 4 cycles
4 - DDxxx 2 Doublewords every 5 cycles
5 - DDxxxx 2 Doublewords every 6 cycles
6 — DxxDxx 2 Doublewords every 6 cycles
7 — DDxxxxxx 2 Doublewords every 8 cycles
8 - DxxxDxxx 2 Doublewords every 8 cycles

Secondary Cache line size:
0 - 4 words

SB 1 - 8 words

2 - 16 words

3 - 32 words

Split Secondary Cache Mode
SS 0 - instruction and data mixed in secondary cache (joint cache)
1 - instruction and data separated by SCAddr(17)

Secondary Cache port width
SW 0 - 128-bit data path to S-cache
1 - Reserved

EC

EP

System Port width
EW 0 - 64-bit
1, 2,3 - Reserved

Secondary Cache present
SC 0 - S-cache present
1 - no S-cache present

MIPS R4000 Microprocessor User's Manual 91

Chapter 4

Table 4-12 (cont.) Config Register Fields

Field Name Description

Dirty Shared coherency state
SM 0 - Dirty Shared coherency state is enabled
1 - Dirty Shared state is disabled

BigEndianMem
BE 0 - kernel and memory are little endian
1 - kernel and memory are big endian

ECC mode enable
EM 0 — ECC mode enabled
1 - parity mode enabled

Block ordering

EB 0 - sequential
1 - sub-block
0 Reserved. Must be written as zeroes, returns zeroes when read.

Primary I-cache Size (I-cache size = 212*!C pytes). In the R4000 processor,
IC this is set to 8 Kbytes; in the R4400 processor, this is set to 16 Kbytes.

Primary D-cache Size (D-cache size = 212*DC pytes). In the R4000 processor,
DC this is set to 8 Kbytes, in the R4400 processor, this is set to 16 Kbytes.

Primary I-cache line size
IB 0 - 16 bytes
1 - 32 bytes

Primary D-cache line size
DB 0 - 16 bytes
1 - 32 bytes

Update on Store Conditional
CuU 0 — Store Conditional uses coherency algorithm specified by TLB
1 - SC uses cacheable coherent update on write

kseg0 coherency algorithm (see EntryLo0O and EntryLol registers and the C

KO 1 field of Table 4-6)

92 MIPS R4000 Microprocessor User's Manual

Memory Management

Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical
address read by the most recent Load Linked instruction.

This register is for diagnostic purposes only, and serves no function
during normal operation.

Figure 4-17 shows the format of the LLAddr register; PAddr represents bits
of the physical address, PA(35:4).

LLAddr Register

31 0
PAddr(35:4) I
32

Figure 4-17 LLAddr Register Format

Cache Tag Registers [TagLo (28) and TagHi (29)]

The TaglLo and TagHi registers are 32-bit read/write registers that hold
either the primary cache tag and parity, or the secondary cache tag and
ECC during cache initialization, cache diagnostics, or cache error
processing. The Tag registers are written by the CACHE and MTCO
instructions.

The P and ECC fields of these registers are ignored on Index Store Tag
operations. Parity and ECC are computed by the store operation.

Figure 4-18 shows the format of these registers for primary cache
operations. Figure 4-19 shows the format of these registers for secondary
cache operations.

Table 4-13 lists the field definitions of the TagLo and TagHi registers.

MIPS R4000 Microprocessor User's Manual 93

Chapter 4

31 8 7 6 5 1 0
TagLo PTagLo PState 0 P
24 2 5 1
31 0
TagHi Undefined I
32
Figure 4-18 TagLo and TagHi Register (P-cache) Formats
31 13 12 10 9 76 0
TagLo STaglLo SState | Vindex | ECC
19 3 3 7
31 0
TagHi Undefined I
32
Figure 4-19 TaglLo and TagHi Register (S-cache) Formats
Table 4-13 Cache Tag Register Fields
Field Description
PTagLo Specifies the physical address bits 35:12
PState Specifies the primary cache state
P Specifies the primary tag even parity bit
STagLo Specifies the physical address bits 35:17
SState Specifies the secondary cache state
Vindex Specifies the virtual index of the associated Primary cache line,
vAddr(14:12)
ECC ECC for the STag, SState, and VIndex fields
0 Reserved. Must be written as zeroes, and returns zeroes when read.
Undefined | The TagHi register should not be used.
94 MIPS R4000 Microprocessor User's Manual

Memory Management

Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID
of the TLB entry to see if there is a match. One of the following
comparisons are also made:

< In 32-bit mode, the highest 7-to-19 bits (depending upon the
page size) of the virtual address are compared to the contents
of the TLB virtual page number.

= In 64-bit mode, the highest 15-to-27 bits (depending upon the
page size) of the virtual address are compared to the contents
of the TLB virtual page number.

If a TLB entry matches, the physical address and access control bits (C, D,
and V) are retrieved from the matching TLB entry. While the V bit of the
entry must be set for a valid translation to take place, it is not involved in
the determination of a matching TLB entry.

Figure 4-20 illustrates the TLB address translation process.

MIPS R4000 Microprocessor User's Manual 95

Chapter 4

Virtual Address (Input)

For valid VPN
address space, see and
the section describing \ ASID /.

Operating Modes
in this chapter.

Add'ress
. Error .

Exception

Address
. Error .

Exception

Yes

\J

.
o

Y

32-bit No
address?

Yes

Y Y Y

Non-
TLB cacheable / TLB _ _ TLB) XTLB
Mod’ Invalid Refill Refill
- No)
Exception Exception

Y
Access
Main / Access \
Cache
Memory

Physical Address (Output)

Figure 4-20 TLB Address Translation

96 MIPS R4000 Microprocessor User's Manual

Memory Management

TLB Misses

If there is no TLB entry that matches the virtual address, a TLB miss
exception occurs.” If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs. If
the C bits equal 010,, the physical address that is retrieved accesses main
memory, bypassing the cache.

TLB Instructions

Table 4-14 lists the instructions that the CPU provides for working with
the TLB. See Appendix A for a detailed description of these instructions.

Table 4-14 TLB Instructions

Op Code

Description of Instruction

TLBP

Translation Lookaside Buffer Probe

TLBR

Translation Lookaside Buffer Read

TLBWI

Translation Lookaside Buffer Write Index

TLBWR

Translation Lookaside Buffer Write Random

t TLB miss exceptions are described in Chapter 5.

MIPS R4000 Microprocessor User's Manual 97

Chapter 4

98

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

This chapter describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

The chapter concludes with a description of each exception’s cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, see
Chapter 7.

MIPS R4000 Microprocessor User's Manual 99

Chapter 5

5.1 How Exception Processing Works

The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, 1/0
interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended
and the processor enters Kernel mode (see Chapter 4 for a description of
system operating modes).

The processor then disables interrupts and forces execution of a software
exception processor (called a handler) located at a fixed address. The
handler saves the context of the processor, including the contents of the
program counter, the current operating mode (User or Supervisor), and
the status of the interrupts (enabled or disabled). This context is saved so
it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter
(EPC) register with a location where execution can restart after the
exception has been serviced. The restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction
was executing in a branch delay slot, the address of the branch instruction
immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a description of the exception handling process, see the description of
the individual exception contained in this chapter, or the flowcharts at the
end of this chapter.

100

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

5.2 Exception Processing Registers

This section describes the CPO registers that are used in exception
processing. Table 5-1 lists these registers, along with their number—each
register has a unique identification number that is referred to as its register
number. For instance, the ECC register is register number 26. The
remaining CPO registers are used in memory management, as described in
Chapter 4.

Software examines the CPO registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. The registers in Table 5-1 are used in exception
processing, and are described in the sections that follow.

Table 5-1 CPO Exception Processing Registers

Register Name Reg. No.

Context 4
BadVAddr (Bad Virtual Address)

Count

Compare register 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
WatchLo (Memory Reference Trap Address Low) 18
WatchHi (Memory Reference Trap Address High) 19
XContext 20
ECC 26
CacheErr (Cache Error and Status) 27
ErrorEPC (Error Exception Program Counter) 30

CPU general registers are interlocked and the result of an instruction can
normally be used by the next instruction; if the result is not available right
away, the processor stalls until it is available. CPO registers and the TLB
are not interlocked, however; there may be some delay before a value
written by one instruction is available to following instructions. For more
information please see Appendix F.

MIPS R4000 Microprocessor User's Manual 101

Chapter 5

Context Register (4)

The Context register is a read/write register containing the pointer to an
entry in the page table entry (PTE) array; this array is an operating system
data structure that stores virtual-to-physical address translations. When
there is a TLB miss, the CPU loads the TLB with the missing translation
from the PTE array. Normally, the operating system uses the Context
register to address the current page map which resides in the kernel-
mapped segment, kseg3. The Context register duplicates some of the
information provided in the BadVAddr register, but the information is
arranged in a form that is more useful for a software TLB exception
handler. Figure 5-1 shows the format of the Context register; Table 5-2
describes the Context register fields.

Context Register

31 23 2 4 3 0
32.-bit PTEBase BadVPN2 0
Mode
9 19 4
63 23 22 43 0
64-bit PTEBase BadVPN2 0
Mode
) 19 4

Figure 5-1 Context Register Format

Table 5-2 Context Register Fields

Field Description

This field is written by hardware on a miss. It contains
BadVPN2 the virtual page number (VPN) of the most recent
virtual address that did not have a valid translation.

This field is a read/write field for use by the operating
system. It is normally written with a value that allows
the operating system to use the Context register as a
pointer into the current PTE array in memory.

PTEBase

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. For other page and PTE sizes,
shifting and masking this value produces the appropriate address.

102 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Bad Virtual Address Register (BadVVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that
displays the most recent virtual address that caused one of the following
exceptions: TLB Invalid, TLB Modified, TLB Refill, Virtual Coherency
Data Access, or Virtual Coherency Instruction Fetch.

Figure 5-2 shows the format of the BadVAddr register.

BadVAddr Register

31 0
32-bit Bad Virtual Address
Mode
63 32 0
64-bit Bad Virtual Address
Mode
64

Figure 5-2 BadVAddr Register Format

Note: The BadVAddr register does not save any information for bus errors,
since bus errors are not addressing errors.

Count Register (9)

The Count register acts as a timer, incrementing at a constant rate—half the
maximum instruction issue rate—whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5-3 shows the format of the Count register.

Count Register

31 0
Count I
32

Figure 5-3 Count Register Format

MIPS R4000 Microprocessor User's Manual 103

Chapter 5

Compare Register (11)

The Compare register acts as a timer (see also the Count register); it
maintains a stable value that does not change on its own.

When the value of the Count register equals the value of the Compare
register, interrupt bit IP(7) in the Cause register is set. This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer
interrupt.

For diagnostic purposes, the Compare register is a read/write register. In
normal use however, the Compare register is write-only. Figure 5-4 shows
the format of the Compare register.

Compare Register
31 0

Compare

32
Figure 5-4 Compare Register Format

104 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Status Register (12)

The Status register (SR) is a read/write register that contains the operating
mode, interrupt enabling, and the diagnostic states of the processor. The
following list describes the more important Status register fields; Figures
5-5 and 5-6 show the format of the entire register, including descriptions
of the fields. Some of the important fields include:

= The 8-bit Interrupt Mask (IM) field controls the enabling of eight
interrupt conditions. Interrupts must be enabled before they
can be asserted, and the corresponding bits are set in both the
Interrupt Mask field of the Status register and the Interrupt
Pending field of the Cause register. For more information, refer
to the Interrupt Pending (IP) field of the Cause register and
Chapter 15, which describes the interrupts.

= The 4-bit Coprocessor Usability (CU) field controls the usability
of 4 possible coprocessors. Regardless of the CUO bit setting,
CPO is always usable in Kernel mode.

< The 9-bit Diagnostic Status (DS) field is used for self-testing,
and checks the cache and virtual memory system.

< The Reverse-Endian (RE) bit, bit 25, reverses the endianness of
the machine. The processor can be configured as either little-
endian or big-endian at system reset; reverse-endian selection
is used in Kernel and Supervisor modes, and in the User mode
when the RE bit is 0. Setting the RE bit to 1 inverts the User
mode endianness.

Status Register Format

Figure 5-5 shows the format of the Status register. Table 5-3 describes the
Status register fields. Figure 5-6 and Table 5-4 provide additional
information on the Diagnostic Status (DS) field. All bits in the DS field
except TS are readable and writable.

Status Register

31 28 2726 25 24 16 15 87 65432 1 0
cu 2 I

(cus.cuoy | RF|FR|RE| DS IM7 - IMO KX|SX| UX|KSU|ERL|EXL]| IE
4 111 9 8 r 11 2 1 1 1

Figure 5-5 Status Register

MIPS R4000 Microprocessor User's Manual 105

Chapter 5

Table 5-3 Status Register Fields

Field

Description

Cu

Controls the usability of each of the four coprocessor unit
numbers. CPO is always usable when in Kernel mode,
regardless of the setting of the CU bit.

1 - usable

0 - unusable

RP

Enables reduced-power operation by reducing the internal
clock frequency. The clock divisor is programmable at boot
time.

0 - full speed

1- reduced clock

FR

Enables additional floating-point registers
0 - 16 registers
1 - 32 registers

RE

Reverse-Endian bit, valid in User mode.

DS

Diagnostic Status field (see Figure 5-6).

Interrupt Mask: controls the enabling of each of the external,
internal, and software interrupts. An interrupt is taken if
interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the
Interrupt Pending field of the Cause register.

0 — disabled

1- enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on
kernel addresses.

0 - 32-bit

1 - 64-bit

SX

Enables 64-bit addressing and operations in Supervisor
mode. The extended-addressing TLB refill exception is used
for TLB misses on supervisor addresses.

0 - 32-hbit

106

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Table 5-3 (cont.) Status Register Fields

Field

Description

UXx

Enables 64-bit addressing and operations in User mode.
The extended-addressing TLB refill exception is used for
TLB misses on user addresses.

0 - 32-hit

1 - 64-bit

KSU

Mode bits
10, - User
01, - Supervisor
00, — Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset,
NMI, or Cache Error exception are taken.

0 - normal

1 - error

EXL

Exception Level; set by the processor when any exception
other than Reset, Soft Reset, NMI, or Cache Error exception
are taken.

0 - normal

1 - exception

Interrupt Enable
0 - disable interrupts
1 - enables interrupts

MIPS R4000 Microprocessor User's Manual 107

Chapter 5

Diagnostic Status Field

24 23 22 21 20 19 18 17 16
0 BEV TS SR 0 CH CE DE
2 1 1 1 1 1 1 1

Figure 5-6 Status Register DS Field

Table 5-4 Status Register Diagnostic Status Bits

Bit Description
Controls the location of TLB refill and general exception
BEV vectors.
0 - normal
1- bootstrap
TS 1- Indicates TLB shutdown has occurred (read-only).
SR 1- Indicates a Reset* signal or NMI has caused a Soft Reset
exception
Hit (tag match and valid state) or miss indication for last
CACHE Hit Invalidate, Hit Write Back Invalidate, Hit Write
CH Back, Hit Set Virtual, or Create Dirty Exclusive for a
secondary cache.
0 — miss
1 - hit
CE Contents of the ECC register set or modify the check bits of the
caches when CE = 1; see description of the ECC register.
Specifies that cache parity or ECC errors cannot cause
DE exceptions.
0 - parity/ECC remain enabled
1 - disables parity/ECC
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

108 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Status Register Modes and Access States

Fields of the Status register set the modes and access states described in the
sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

- [E=1
e EXL=0
- ERL=0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

= The processor is in User mode when KSU = 10,, EXL =0, and

ERL = 0.

= The processor is in Supervisor mode when KSU = 01,, EXL =0,
and ERL = 0.

= The processor is in Kernel mode when KSU = 00,, or EXL = 1,
or ERL = 1.

32-and 64-bit Modes: The following CPU Status register bit settings select
32- or 64-bit operation for User, Kernel, and Supervisor operating modes.
Enabling 64-bit operation permits the execution of 64-bit opcodes and
translation of 64-bit addresses. 64-bit operation for User, Kernel and
Supervisor modes can be set independently.

« 64-bit addressing for Kernel mode is enabled when KX = 1.
64-bit operations are always valid in Kernel mode.

= 64-bit addressing and operations are enabled for Supervisor
mode when SX = 1.

« 64-bit addressing and operations are enabled for User mode
when UX = 1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the section above titled, Operating Modes.

MIPS R4000 Microprocessor User's Manual 109

Chapter 5

User Address Space Accesses: Access to the user address space is allowed
in any of the three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the
following bits in the Diagnostic Status field:

« TS=0
e ERLandBEV =1

The SR bit distinguishes between the Reset exception and the Soft Reset
exception (caused either by Reset* or Nonmaskable Interrupt [NMI]).

Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent
exception.

Figure 5-7 shows the fields of this register; Table 5-5 describes the Cause
register fields. A 5-bit exception code (ExcCode) indicates one of the
causes, as listed in Table 5-6.

All bits in the Cause register, with the exception of the IP(1:0) bits, are read-
only; IP(1:0) are used for software interrupts.

Table 5-5 Cause Register Fields

Field Description
Indicates whether the last exception taken occurred in a branch delay slot.
BD 1 - delay slot
0 - normal
CE Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken.
Indicates an interrupt is pending.
IP 1 - interrupt pending
0 - nointerrupt
ExcCode Exception code field (see Table 5-6)
0 Reserved. Must be written as zeroes, and returns zeroes when read.
110 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Cause Register

3130 29 28 27 16 15 876 21 0
BD| 0| CE oZ IP7 iPo [0 & | o
11 2 12 8 15 2

Figure 5-7 Cause Register Format

Table 5-6 Cause Register ExcCode Field

Exception . -
Mnemonic Description
Code Value
0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 VCEI Virtual Coherency Exception instruction
15 FPE Floating-Point exception
16-22 - Reserved
23 WATCH Reference to WatchHi/WatchLo address
24-30 - Reserved
31 VCED Virtual Coherency Exception data

MIPS R4000 Microprocessor User's Manual 111

Chapter 5

Exception Program Counter (EPC) Register (14)

32-bit
Mode

64-bit
Mode

The Exception Program Counter (EPC) is a read/write register that
contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:

< the virtual address of the instruction that was the direct cause
of the exception, or

= the virtual address of the immediately preceding branch or
jump instruction (when the instruction is in a branch delay
slot, and the Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register issettoa 1.

Figure 5-8 shows the format of the EPC register.

EPC Register

31 0
EPC
32
63 0
EPC
64

Figure 5-8 EPC Register Format

112

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

WatchLo (18) and WatchHi (19) Registers

R4000 processors provide a debugging feature to detect references to a
selected physical address; load and store operations to the location
specified by the WatchLo and WatchHi registers cause a Watch exception
(described later in this chapter).

Figure 5-9 shows the format of the WatchLo and WatchHi registers;
Table 5-7 describes the WatchLo and WatchHi register fields.

WatchLo Register

31 3 2 1 0
PAddr0 0| R [W
29 1 1 1
WatchHi Register
31 4 3 0
0 PAddrl I
28 4

Figure 5-9 WatchLo and WatchHi Register Formats

Table 5-7 WatchHi and WatchLo Register Fields

Field Description
PAddrl Bits 35:32 of the physical address
PAddro Bits 31:3 of the physical address
R Trap on load references if set to 1
W Trap on store references if setto 1
0 Reserved. Must be written as zeroes, and returns
zeroes when read.

MIPS R4000 Microprocessor User's Manual 113

Chapter 5

XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page
table entry (PTE) array, an operating system data structure that stores
virtual-to-physical address translations. When there is a TLB miss, the
operating system software loads the TLB with the missing translation
from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddr register, and puts itin a form useful
for a software TLB exception handler. The XContext register is for use with
the XTLB refill handler, which loads TLB entries for references to a 64-bit
address space, and is included solely for operating system use. The
operating system sets the PTE base field in the register, as needed.
Normally, the operating system uses the Context register to address the
current page map, which resides in the kernel-mapped segment kseg3.
Figure 5-10 shows the format of the XContext register; Table 5-8 describes
the XContext register fields.

XContext Register

63 3332 3130 4 3 0
PTEBase R ‘ BadVPN2 0
31 2 27 4

Figure 5-10 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that caused
the TLB miss; bit 12 is excluded because a single TLB entry maps to an
even-odd page pair. For a 4-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

Table 5-8 XContext Register Fields

Field Description
BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a miss. It
contains the VPN of the most recent invalidly translated virtual address.
The Region field contains bits 63:62 of the virtual address.
00, = user
R .
01, = supervisor
11, = kernel.
The Page Table Entry Base read/write field is normally written with a value
PTEBase | thatallows the operating system to use the Context register as a pointer into
the current PTE array in memory.
114 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes either
secondary-cache data ECC bits or primary-cache data parity bits for cache
initialization, cache diagnostics, or cache error processing. (Tag ECC and
parity are loaded from and stored to the TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:
= written into the primary data cache on store instructions

(instead of the computed parity) when the CE bit of the Status
register is set

= substituted for the computed instruction parity for the CACHE
operation Fill

e XORed into the secondary cache computed ECC for the
following primary data cache CACHE operations: Index Write
Back Invalidate, Hit Write Back, and Hit Write Back Invalidate.

Figure 5-11 shows the format of the ECC register; Table 5-9 describes the
register fields.

ECC Register
31 8 7 0

0 ‘ ECC

24 8
Figure 5-11 ECC Register Format

Table 5-9 ECC Register Fields

Field Description
An 8-bit field specifying the ECC bits read from or
ECC written to a secondary cache, or the even byte parity bits

to be read from or written to a primary cache.

Reserved. Must be written as zeroes, and returns zeroes
when read.

MIPS R4000 Microprocessor User's Manual 115

Chapter 5

Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes ECC errors in the
secondary cache and parity errors in the primary cache. Parity errors
cannot be corrected.

All single- and double-bit ECC errors in the secondary cache tag and data
are detected; single-bit errors in the cache tag are automatically corrected.
Single-bit ECC errors in the secondary cache data are not automatically
corrected.

The CacheErr register holds cache index and status bits that indicate the
source and nature of the error; it is loaded when a Cache Error exception
is asserted.

Figure 5-12 shows the format of the CacheErr register and Table 5-10
describes the CacheErr register fields.

CacheErr Register

31 30 29 28 27 26 25 24 23 22 21 2 0
ER‘EC‘ED‘ET‘ ES‘EE‘EB‘ El ‘EW 0 Sldx ‘ PIDx
1 11111 1 19 3

Figure 5-12 CacheErr Register Format

Table 5-10 CacheErr Register Fields

Field Description
Type of reference
ER 0 - instruction
1 - data
Cache level of the error
EC 0 - primary

1 - secondary

Indicates if a data field error occurred

ED 0 - noerror
1 - error
Indicates if a tag field error occurred
ET 0 - noerror
1 - error

116

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Table 5-10 (cont.) CacheErr Register Fields

Field

Description

ES

Indicates the error occurred while accessing primary or secondary cache in
response to an external request.

0 - internal reference

1 - external reference

EE

This bit is set if the error occurred on the SysAD bus.

EB

This bit is set if a data error occurred in addition to the instruction error
(indicated by the remainder of the bits). If so, this requires flushing the
data cache after fixing the instruction error.

El

This bit is set on a secondary data cache ECC error while refilling the
primary cache on a store miss. The ECC handler must first do an Index
Store Tag to invalidate the incorrect data from the primary data cache.

EW

This bit is only available on the R4400 processor. It is set on an
multiprocessor cache error when the CacheErr register is already holding
the values of a previous cache error. This bit could be set by the processor
from the time the CacheErr register is loaded due to an error until the time
that an ERET instruction is executed. Once the EW bit is set, it can only be
cleared by a reset. The following errors set the EW bit:

= Secondary cache tag errors arising from an external request

(multibit errors only)
= Secondary cache data errors arising from an external update
= Primary cache tag errors arising from an external request

Sldx

Bits pAddr(21:3) of the reference that encountered the error (which is not
necessarily the same as the address of the doubleword in error, but is
sufficient to locate that doubleword in the secondary cache).

Pldx

Bits vVAddr(14:12) of the doubleword in error (used with Sldx to construct
a virtual index for the primary caches).

Reserved. Must be written as zeroes, and returns zeroes when read.

MIPS R4000 Microprocessor User's Manual 117

Chapter 5

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC

is used on ECC and parity error exceptions. It is also used to store the

program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt

(NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address

can be:

= the virtual address of the instruction that caused the exception

= the virtual address of the immediately preceding branch or

jump instruction, when this address is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

Figure 5-13 shows the format of the ErrorEPC register.

ErrorEPC Register
31

0

32-bit I
Vode ErrorEPC

32

63

0

64-bit ErrorEPC
Mode

64

Figure 5-13 ErrorEPC Register Format

118 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

5.3 Processor Exceptions

This section describes the processor exceptions—it describes the cause of
each exception, its processing by the hardware, and servicing by a handler
(software). The types of exception, with exception processing operations,
are described in the next section.

Exception Types
This section gives sample exception handler operations for the following
exception types:
- reset
= soft reset
= nonmaskable interrupt (NMI)
= cache error
= remaining processor exceptions
When the EXL bit in the Status register is 0, either User, Supervisor, or

Kernel operating mode is specified by the KSU bits in the Status register.
When the EXL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which means
the system is in Kernel mode. After saving the appropriate state, the
exception handler typically changes KSU to Kernel mode and resets the
EXL bit back to 0. When restoring the state and restarting, the handler
restores the previous value of the KSU field and sets the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to 0 (see the ERET
instruction in Appendix A).

In the following sections, sample hardware processes for various
exceptions are shown, together with the servicing required by the handler
(software).

MIPS R4000 Microprocessor User's Manual 119

Chapter 5

Reset Exception Process

Figure 5-14 shows the Reset exception process.

T: undefined
Random — TLBENTRIES-1
Wired < 0
Config « CM||EC||EP||SB||SS||SW||EW||SC||SM||BE]|J|EM | EB]| 0] IC
|| DC || undefined®
ErrorEPC ~ RestartPC /* If the instruction is in a branch delay slot, RestartPC */
/* holds the value of PC-4, otherwise RestartPC = PC */
If R4400 then
CacheErr — undefined® || 0 || undefined?® /* Set EW bit to 0 */
endif
SR « SR31.3 | 111011 0| SRyg3 I L Il SRy
PC ~ OxFFFF FFFF BFCO 0000

Figure 5-14 Reset Exception Processing

Cache Error Exception Process

Figure 5-15 shows the Cache Error exception process.

T: ErrorEPC ~ RestartPC /* If the instruction is in a branch delay slot, RestartPC */
/* holds the value of PC-4, otherwise RestartPC = PC */
if R4000 then
CacheErr — ER||EC || ED || ET || ES || EE || EB || El || 0% || Sldx || Pldx
else * R4400 */
CacheErr -« ER||EC||ED||ET||ES||EE||EB || EI||EW || 0| Sldx || Pldx
endif
SR « SR31:3 1| 1[ISR10
if SR22 =1 then
PC — OxFFFF FFFF BFCO 0200 + 0x100
else
PC ~ OxFFFF FFFF AO00 0000 + 0x100
endif

Figure 5-15 Cache Error Exception Processing

120 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Soft Reset and NMI Exception Process

Figure 5-16 shows the Soft Reset and NMI exception process.

T: ErrorEPC — RestartPC /* If the instruction is in a branch delay slot, RestartPC */
/* holds the value of PC-4, otherwise RestartPC = PC */
SR < SR31:23 [| 1| O[] 1| SR1g:3 | 1 || SR1:0
If R4400 then
CacheErr — CacheErrsq.o4 || 0 || CacheErrys.q
endif
PC — OxFFFF FFFF BFCO 0000

Figure 5-16 Soft Reset and NMI Exception Processing

General Exception Process

Figure 5-17 shows the process used for exceptions other than Reset, Soft
Reset, NMI, and Cache Error.

T: if SRy = 0 then * if not EXL */
EPC ~ RestartPC [* If the instruction is in a branch delay slot, */
/* RestartPC holds the value of PC-4, */
[* otherwise RestartPC = PC */
Cause — BD || 0 || CE || 0% || Cause;s.g || O || ExcCode || 02
if TLBrefill then vector — 0x000
elseif XTLBrefill then vector — 0x080
else /*notamiss* vector — 0x180
else
Cause — Causegy || 0 || CE || 0% || Cause;s.g || O || ExcCode || 02
vector — 0x180
endif
SR < SR315 || 1 || SRy /* EXL*
if SR22 =1 then
PC ~ OxFFFF FFFF BFCO 0200 + vector
else
PC ~ OxFFFF FFFF 8000 0000 + vector
endif

Figure 5-17 General Exception Processing (Except Reset, Soft Reset, NMI, and Cache Error)

MIPS R4000 Microprocessor User's Manual 121

Chapter 5

Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to the
dedicated Reset exception vector at an uncached and unmapped address.
Addresses for all other exceptions are a combination of a vector offset and
a base address.

The boot-time vectors (when BEV =1 in the Status register) are at
uncached and unmapped addresses. During normal operation (when
BEV = 0) the regular exceptions have vectors in cached address spaces;
Cache Error is always at an uncached address so that cache error handling
can bypass a suspect cache.

Table 5-11 shows the 64-bit-mode vector base address for all exceptions;
the 32-bit mode address is the low-order 32 bits (for instance, the base
address for NMI in 32-bit mode is 0xBFCO0 0000).

Table 5-12 shows the vector offset added to the base address to create the
exception address.

Table 5-11 Exception Vector Base Addresses

. BEV
Exception
0 1
Cache Error OxFFFF FFFF A000 0000 | OXFFFF FFFF BFCO 0200
Others OxFFFF FFFF 8000 0000 OxFFFF FFFF BFCO 0200
Reset, NMI,
Soft Reset OxFFFF FFFF BFCO 0000
Table 5-12 Exception Vector Offsets
Exception R4000 Processor Vector Offset

TLB refill, EXL=0 0x000
XTLB refill, EXL =0 (X = 64-bit TLB) 0x080
Cache Error 0x100
Others 0x180
Reset, Soft Reset, NMI none

122

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their
priority shown in Table 5-13 with (certain of the exceptions, such as the
TLB exceptions and Instruction/Data exceptions, grouped together for
convenience). While more than one exception can occur for a single
instruction, only the exception with the highest priority is reported.

Table 5-13 Exception Priority Order

Reset (highest priority)

Soft Reset caused by Reset* signal
Nonmaskable Interrupt (NMI) (Soft Reset exception caused by NMI)

Address error — Instruction fetch
TLB refill — Instruction fetch
TLB invalid — Instruction fetch

Cache error — Instruction fetch

Virtual Coherency — Instruction fetch

Bus error — Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved
Instruction, Coprocessor Unusable, or Floating-Point Exception

Address error — Data access

TLB refill — Data access

TLB invalid — Data access

TLB modified — Data write
Cache error — Data access
Watch

Virtual Coherency — Data access

Bus error — Data access

Interrupt (lowest priority)

Generally speaking, the exceptions described in the following sections are
handled (“processed”) by hardware; these exceptions are then serviced by
software.

MIPS R4000 Microprocessor User's Manual 123

Chapter 5

Reset Exception

Cause

The Reset exception occurs when the ColdReset*" signal is asserted and
then deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

= location 0xBFCO 0000 in 32-bit mode

= location OxFFFF FFFF BFCO 0000 in 64-bit mode
The Reset vector resides in unmapped and uncached CPU address space,
so the hardware need not initialize the TLB or the cache to process this

exception. It also means the processor can fetch and execute instructions
while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception
occurs, except for the following register fields:

= In the Status register, SR and TS are cleared to 0, and ERL and
BEV are set to 1. All other bits are undefined.

= Config register is initialized with the boot mode bits read from
the serial input (see Figure 5-14).

= The Random register is initialized to the value of its upper
bound.

= The Wired register is initialized to 0.
< The EW bit in the CacheErr register is cleared (R4400 only).

Reset exception processing is shown in Figure 5-14.

Servicing

The Reset exception is serviced by:

= initializing all processor registers, coprocessor registers, caches,
and the memory system

« performing diagnostic tests
= bootstrapping the operating system

T In the following sections—indeed, throughout this book—a signal followed by an asterisk,
such as Reset*, is low active.

124 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Soft Reset Exception

Cause

The Soft Reset exception occurs in response to either the Reset* input
signal or a Nonmaskable Interrupt (NM1)T.

The NMI is caused either by an assertion of the NMI* signal or an external
write to the Int*[6] bit of the Interrupt register.

This exception is not maskable.

Processing

Regardless of the cause, when this exception occurs the SR bit of the Status
register is set, distinguishing this exception from a Reset exception.

The processor does not indicate any distinction between an exception
caused by the Reset* signal or the NMI* signal.

= An exception caused by an NMI can only be taken if the
processor is processing instructions; it is taken at the
instruction boundary. It does not abort any state machines,
preserving the state of the processor for diagnosis.

= An exception caused by assertion of Reset* performs a subset
of the full reset initialization. After a processor is completely
initialized by a Reset exception (caused by ColdReset* or
Power-On), Reset* can be asserted on the processor in any
state, even if the processor is no longer processing instructions.
In this situation the processor does not read or set processor
configuration parameters. It does, however, initialize all other
processor state that requires hardware initialization (for
instance, the state machines and registers), in order that the
CPU can fetch and execute the Reset exception handler located
in uncached and unmapped space. Although no other
processor state is unnecessarily changed, a soft reset sequence
may be forced to alter some state since the exception can be
invoked arbitrarily on a cycle boundary, and abort any
multicycle operation in progress. Since bus, cache, or other
operations may be interrupted, portions of the cache, memory,
or other processor state may be inconsistent.

t In this book, a Soft Reset exception caused by assertion of the Reset* signal is referred to
as a “soft reset” or “warm reset.” A Soft Reset exception caused by a nonmaskable
interrupt (NMI) is referred to as a “nonmaskable interrupt exception.”

MIPS R4000 Microprocessor User's Manual 125

Chapter 5

In both the Reset* and NMI cases the processor jumps to the Reset
exception vector located in unmapped and uncached address space, so
that the cache and TLB contents need not be initialized to service this
exception. Typically, the Reset exception vector is located in PROM, and
system memory does not need to be initialized to handle the exception.

As previously noted, state machines interrupted by Reset* may cause
some register contents to be inconsistent with the other processor state.
Otherwise, on an exception caused by Reset* or NMI the contents of all
registers are preserved, except for:

= EW bit in the CacheErr register, which is reset to 0 (R4400 only)
= ErrorEPC register, which contains the restart PC

< ERL bit of the Status register, which is set to 1

= SR bit of the Status register, which is set to 1

= BEV bit of the Status register, which is set to 1

= TS bit of the Status register, which is set to 0

e PC is set to the reset vector OxFFFF FFFF BFCO 0000

Soft reset exception processing is shown in Figure 5-16.

Servicing

The exception initiated by Reset* is intended to quickly reinitialize a
previously operating processor after a fatal error such as a Master/
Checker mismatch. The NMI can be used for purposes other than resetting
the processor while preserving cache and memory contents. For example,
the system might use an NMI to cause an immediate, controlled shutdown
when it detects an impending power failure.

The exceptions due to Reset* and NMI appear identical to software; both
exceptions jump to the Reset exception vector and have the Status register
SR bit set. Unless external hardware provides a way to distinguish
between the two, they are serviced by saving the current user-visible
processor state for diagnostic purposes and reinitializing as for the Reset
exception. Itis not normally possible to continue program execution after
returning from this exception, since a Reset* signal can be accepted
anytime and an NMI can occur in the midst of another error exception.

126

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute
one of the following:

= load or store a doubleword that is not aligned on a doubleword
boundary

= load, fetch, or store a word that is not aligned on a word
boundary

= load or store a halfword that is not aligned on a halfword
boundary

= reference the kernel address space from User or Supervisor
mode

= reference the supervisor address space from User mode

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or
AdES code in the Cause register is set, indicating whether the instruction
caused the exception with an instruction reference, load operation, or store
operation shown by the EPC register and BD bit in the Cause register.

When this exception occurs, the BadVVAddr register retains the virtual
address that was not properly aligned or that referenced protected
address space. The contents of the VPN field of the Context and EntryHi
registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception, unless this instruction is in a branch delay slot. Ifitisina
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indication.

Address Error exception processing is shown in Figure 5-17.

Servicing

The process executing at the time is handed a UNIX SIGSEGV
(segmentation violation) signal. This error is usually fatal to the process
incurring the exception.

MIPS R4000 Microprocessor User's Manual 127

Chapter 5

TLB Exceptions

Three types of TLB exceptions can occur:

= TLB Refill occurs when there is no TLB entry that matches an
attempted reference to a mapped address space.

< TLB Invalid occurs when a virtual address reference matches a
TLB entry that is marked invalid.

= TLB Modified occurs when a store operation virtual address
reference to memory matches a TLB entry which is marked
valid but is not dirty (the entry is not writable).

The following three sections describe these TLB exceptions.

128 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a
reference to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for
references to 32-bitaddress spaces, and one for references to 64-bit address
spaces. The UX, SX, and KX bits of the Status register determine whether
the user, supervisor or kernel address spaces referenced are 32-bit or 64-
bit spaces. All references use these vectors when the EXL bit issetto 0 in
the Status register. This exception sets the TLBL or TLBS code in the
ExcCode field of the Cause register. This code indicates whether the
instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or
store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers hold the virtual address that failed address translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which
to place the replacement TLB entry. The contents of the EntryLo register
are undefined. The EPC register contains the address of the instruction
that caused the exception, unless this instruction is in a branch delay slot,
in which case the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set.

TLB Refill exception processing is shown in Figure 5-17.

Servicing

To service this exception, the contents of the Context or XContext register
are used as a virtual address to fetch memory locations containing the
physical page frame and access control bits for a pair of TLB entries. The
two entries are placed into the EntryLoO/EntryLol register; the EntryHi and
EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address

and access control information is on a page that is not resident in the TLB.
This condition is processed by allowing a TLB refill exception in the TLB
refill handler. This second exception goes to the common exception vector
because the EXL bit of the Status register is set.

MIPS R4000 Microprocessor User's Manual 129

Chapter 5

TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or
TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load operation,
or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which
to put the replacement TLB entry. The contents of the EntryLo register are
undefined.

The EPC register contains the address of the instruction that caused the
exception unless this instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

TLB Invalid exception processing is shown in Figure 5-17.

Servicing

A TLB entry is typically marked invalid when one of the following is true:
e avirtual address does not exist

= the virtual address exists, but is not in main memory (a page
fault)

= atrap is desired on any reference to the page (for example, to
maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is
located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.

130

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address
reference to memory matches a TLB entry that is marked valid but is not
dirty and therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code
in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the
exception unless that instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

TLB Modified exception processing is shown in Figure 5-17.

Servicing

The kernel uses the failed virtual address or virtual page number to
identify the corresponding access control information. The page
identified may or may not permit write accesses; if writes are not
permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

MIPS R4000 Microprocessor User's Manual 131

Chapter 5

Cache Error Exception

Cause

The Cache Error exception occurs when either a secondary cache ECC
error, primary cache parity error, or SysAD bus parity/ECC error
condition occurs and error detection is enabled. This exception is not
maskable, but error detection can be disabled if either ERL or DE =1 in the
Status register.

Processing

The processor sets the ERL bit in the Status register, saves the exception
restart address in the ErrorEPC register, records information about the
error in the CacheErr register, and then transfers to a special vector that is
always in uncached space (Tables 5-11 and 5-12). No other registers are
changed. Cache Error exception processing is shown in Figure 5-15.

Servicing

Unlike other exception conditions, cache errors cannot be avoided while
operating at exception level, so Cache Error exceptions must be handled
from exception level. Any general register used by the handler must be
saved before use and restored before return; this includes the registers
available to regular exception handlers without save/restore. When
ERL=1 in the Status register, the user address region becomes a 231-byte
uncached space mapped directly to physical addresses, allowing the
Cache Error handler to save registers to memory without using a register
to construct the address. The handler can save and restore registers using
operating system-reserved locations in low physical memory by using R0
as the base register for load and store instructions. All errors should be
logged. To correct single-bit ECC errors in the secondary cache, the
system uses the CACHE instruction. Execution then resumes through an
ERET instruction. To correct cache parity errors and non-single-bit ECC
errors in unmodified cache blocks, the system uses the CACHE instruction
to invalidate the cache block, overwrites the old data through a cache miss,
and resumes execution with an ERET. Other errors are not correctable and
are likely to be fatal to the current process. The exception handler cannot
be interrupted by another Cache Error exception because error detection
is disabled while ERL = 1, so the handler should avoid actions which
might cause an unnoticed cache error. The R4400 (but not R4000)
implements the EW bit in the CacheErr register to record a nonrecoverable
error occurring while ERL = 1.

132

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Virtual Coherency Exception

Cause
A Virtual Coherency exception occurs when all of the following conditions
are true:
« a primary cache miss hits in the secondary cache

« bits 14:12 of the virtual address were not equal to the
corresponding bits of the Pldx field of the secondary cache tag

< the cache algorithm for the page (from the C field in the TLB)
specifies that the page is cached

This exception is not maskable.

Processing
The common exception vector is used for this exception.

The VCEI or VCED code in the Cause register is set for instruction and data
cache misses respectively.

The BadVAddr register holds the virtual address that caused the exception.

Virtual Coherency exception processing is shown in Figure 5-17.

Servicing

Using the appropriate CACHE instruction(s), the primary cache line at
both the previous and the new virtual index should be invalidated® (and
written back, if necessary), and the PIDx field of the secondary cache
should be written with the new virtual index. Once completed, the
program continues.

Software can avoid the cost of this exception by using consistent virtual
primary cache indexes to access the same physical data.

T When a cache miss occurs, the processor refills the primary cache line at the present virtual
index before taking an exception.

MIPS R4000 Microprocessor User's Manual 133

Chapter 5

Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as
bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This exception is not maskable.

A Bus Error exception occurs either when the SysCmd(5) bit indicates the
data is erroneous (see Chapter 12) or the IvdErr* signal is asserted
(Chapter 12). This can only occur when a cache miss refill, uncached
reference, or an unbuffered write occurs synchronously; a Bus Error
exception resulting from a buffered write transaction must be reported
using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE
or DBE code in the ExcCode field of the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bit in the
Cause register) caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the
exception, unless itis in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of
the Cause register is set. Bus Error processing is shown in Figure 5-17.

Servicing

The physical address at which the fault occurred can be computed from
information available in the CPO registers.

= |f the IBE code in the Cause register is set (indicating an
instruction fetch reference), the virtual address is contained in
the EPC register.

- |f the DBE code is set (indicating a load or store reference), the
instruction that caused the exception is located at the virtual
address contained in the EPC register (or 4+ the contents of the
EPC register if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by
interpreting the instruction. The physical address can be obtained by
using the TLBP instruction and reading the EntryLo register to compute

134

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

the physical page number. The process executing at the time of this
exception is handed a UNIX SIGBUS (bus error) signal, which is usually
fatal.

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB' instruction results in a 2’s complement overflow. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code
in the Cause register is set.

The EPC register contains the address of the instruction that caused the
exception unless the instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5-17.

Servicing

The process executing at the time of the exception is handed a UNIX
SIGFPE/FPE_INTOVF_TRAP (floating-point exception/integer
overflow) signal. This error is usually fatal to the current process.

T See Appendix A for a description of these instructions.

MIPS R4000 Microprocessor User's Manual 135

Chapter 5

Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEIT instruction results in a TRUE
condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code
in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5-17.

Servicing

The process executing at the time of a Trap exception is handed a UNIX
SIGFPE/FPE_INTOVF_TRAP (floating-point exception/integer
overflow) signal. This error is usually fatal.

T See Appendix A for a description of these instructions.

136 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code
in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status
register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5-17.

Servicing

When this exception occurs, control is transferred to the applicable system
routine.

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

MIPS R4000 Microprocessor User's Manual 137

Chapter 5

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code
in the Cause register is set.

The EPC register contains the address of the BREAK instruction unless it
is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status
register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5-17.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; this is accomplished by adding a value of
4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

138 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Reserved Instruction Exception

Cause
The Reserved Instruction exception occurs when one of the following
conditions occurs:

= anattempt is made to execute an instruction with an undefined
major opcode (bits 31:26)

= an attempt is made to execute a SPECIAL instruction with an
undefined minor opcode (bits 5:0)

= an attempt is made to execute a REGIMM instruction with an
undefined minor opcode (bits 20:16)

= an attempt is made to execute 64-bit operations in 32-bit mode
when in User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the value
of the KX bit in the Status register.

This exception is not maskable.

Reserved Instruction exception processing is shown in Figure 5-17.

Processing

The common exception vector is used for this exception, and the RI code
in the Cause register is set.

The EPC register contains the address of the reserved instruction unless it
is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process
executing at the time of this exception is handed a UNIX SIGILL/
ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal.
This error is usually fatal.

MIPS R4000 Microprocessor User's Manual 139

Chapter 5

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to
execute a coprocessor instruction for either:

a corresponding coprocessor unit that has not been marked
usable, or

CPO instructions, when the unit has not been marked usable
and the process executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code
in the Cause register is set. The contents of the Coprocessor Usage Error field
of the coprocessor Control register indicate which of the four coprocessors
was referenced. The EPC register contains the address of the unusable
coprocessor instruction unless it is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction.

Coprocessor Unusable exception processing is shown in Figure 5-17.

Servicing

The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of the
following situations:

If the process is entitled access to the coprocessor, the
coprocessor is marked usable and the corresponding user state
is restored to the coprocessor.

If the process is entitled access to the coprocessor, but the
coprocessor does not exist or has failed, interpretation of the
coprocessor instruction is possible.

If the BD bit is set in the Cause register, the branch instruction
must be interpreted; then the coprocessor instruction can be
emulated and execution resumed with the EPC register
advanced past the coprocessor instruction.

If the process is not entitled access to the coprocessor, the
process executing at the time is handed a UNIX SIGILL/
ILL_PRIVIN_FAULT (illegal instruction/privileged instruction
fault) signal. This error is usually fatal.

140

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Floating-Point Exception

Cause
The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code
in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause
of this exception.

Floating-Point exception processing is shown in Figure 5-17.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should emulate
the instruction; for other exceptions, the kernel should pass the exception
to the user program that caused the exception.

MIPS R4000 Microprocessor User's Manual 141

Chapter 5

Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the
physical address specified in the WatchLo/WatchHi System Control
Coprocessor (CP0) registers. The WatchLo register specifies whether a
load or store initiated this exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if the EXL bit is set in the Status register,
and Watch is only maskable by setting the EXL bit in the Status register.

Processing

The common exception vector is used for this exception, and the Watch
code in the Cause register is set.

Watch exception processing is shown in Figure 5-17.

Servicing

The Watch exception is a debugging aid; typically the exception handler
transfers control to a debugger, allowing the user to examine the situation.

To continue, the Watch exception must be disabled to execute the faulting
instruction. The Watch exception must then be reenabled. The faulting
instruction can be executed either by interpretation or by setting
breakpoints.

142

MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions
is asserted. The significance of these interrupts is dependent upon the
specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding
bit in the Int-Mask field of the Status register, and all of the eight interrupts
can be masked at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code
in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. Itis
possible that more than one of the bits can be simultaneously set (or even
no bits may be set) if the interrupt is asserted and then deasserted before
this register is read.

Interrupt exception processing is shown in Figure 5-17.

Servicing

If the interrupt is caused by one of the two software-generated exceptions
(SW1 or SWO0), the interrupt condition is cleared by setting the
corresponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

MIPS R4000 Microprocessor User's Manual 143

Chapter 5

5.4 Exception Handling and Servicing Flowcharts
The remainder of this chapter contains flowcharts for the following
exceptions and guidelines for their handlers:
= general exceptions and their exception handler
= TLB/XTLB miss exception and their exception handler
= cache error exception and its handler

= reset, soft reset and NMI exceptions, and a guideline to their
handler.

Generally speaking, the exceptions are handled by hardware (HW); the
exceptions are then serviced by software (SW).

144 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Exceptions other than Reset, Soft Reset, NMI, CacheError or first-level miss
Note: Interrupts can be masked by IE or IMs
and Watch is masked if EXL = 1

Comments

*Watch & FP Control Status Register
are only set if the respective exception

Set Watch Register
Set FP Control Status Register
EnHi <- VPN2, ASID

occurs.
Context <- VPN2 EnHi, X/Context are set only for
Set Cause Register *TLB- Invalid, Modified,
EXCCode, CE & Refill exceptions
Set BadVA BadVA is set only for

TLB- Invalid, Modified,
Refill- and VCED/I exceptions
Note: not set if it is a Bus Error

Check if exception within
another exception

Instr. in
Br.Dly. Slot?

Yes No

Y \

Cause 31 (BD) <- 1 Cause 31 (BD) <-0
EPC <- (PC - 4) EPC <-PC
EXL<-1 Processor forced to Kernel Mode

& interrupt disabled

=0 (normal) =1 (bootstrap)

A A

PC <- OxFFFF FFFF 8000 0000 + 180 PC <- OXFFFF FFFF BFCO 0200 + 180
(unmapped, cached) (unmapped, uncached)

I > I
T

To General Exception Servicing Guidelines

Figure 5-18 General Exception Handler (HW)

MIPS R4000 Microprocessor User's Manual 145

Chapter 5

Comments
MFCO - * Unmapped vector so TLBMod, TLBInv,
X/Context TLB Refill exceptions not possible
EPC
Status * EXL=1 so Watch, Interrupt exceptions disabled
Cause <))
* OS/System to avoid all other exceptions
*Only CacheError, Reset, Soft Reset, NMI
 / exceptions possible.
MTCO -
(Set Status Bits:)
KSU<- 00
EXL<-0 (optional - only to enable Interrupts while keeping Kernel Mode)
& IE=1

¢ * After EXL=0, all exceptions allowed.
Check CAUSE REG. & Jump to (except interrupt if masked by IE or IM
appropriate Service Code and CacheError if masked by DE)

Optional: Check only if 2nd-level TLB miss

Reset the processor l -

Service Code

EXL=1
MTCO -
EPC
STATUS
Y * ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction which is

ERET

in the ERET'’s branch delay slot
*PC <- EPC; EXL <-0
*LLbit<-0

Figure 5-19 General Exception Servicing Guidelines (SW)

146 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Instr. in
Br.Dly. Slot?

Yes

A

EnHi <- VPN2, ASID EnHi <- VPN2, ASID

Context <- VPN2 Context <- VPN2

Set Cause Reg. Set Cause Reg.
EXCCode, CE and EXCCode, CE and
Set BadVA Set BadVA

Check if exception within
another exception

EPC <- (PC-4) EPC <- PC
Cause bit 31 (BD) <- 1 Cause bit 31 (BD) <- 0
| l I
v XTLB N
Instruction?
Y Y \
Vec. Off. = 0x080 Vec. Off. = 0x000 Vec. Off. = 0x180
| < - |
Points to Refill Exception ¢ Points to General Exception
EXL <1 Processor forced to Kernel Mode &
. interrupt disabled

BEV
(SR bit 22)

=0 (normal) =1 (bootstrap)

Y Y

PC <- OxFFFF FFFF 8000 0000 + Vec.Off. PC <- OXFFFF FFFF BFCO 0200 + Vec.Off.
(unmapped, cached) (unmapped, uncached)

[_ |

-t

To TLB/XTLB Exception Servicing Guidelines

Figure 5-20 TLB/XTLB Miss Exception Handler (HW)

MIPS R4000 Microprocessor User's Manual 147

Chapter 5

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions
not possible

MFCO -

* EXL=1 so Watch, Interrupt exceptions disabled
CONTEXT < , _
* OS/System to avoid all other exceptions

*Only CacheError, Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

) * There could be a TLB miss again during the mapping
Service Code < of the data or instruction address. The processor will

jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
ERET < in the ERET’s branch delay slot
*PC <-EPC; EXL<-0

* LLbit <- 0

Figure 5-21 TLB/XTLB Exception Servicing Guidelines (SW)

148 MIPS R4000 Microprocessor User's Manual

CPU Exception Processing

Note: Can be masked/disabled by DE (SR16) bit =1

Set CacheErr Reg.

Y

Instr. in
Br. Dly. Slot?

Yes

\
ErrfEPC <- (PC - 4) ErrEPC <- PC

Y

=0 (normal) =1 (bootstrap)

Cache Error Exception Handling (HW)

Y Y

PC <- OXFFFF FFFF A0O00 0000 + 100 PC <- OxFFFF FFFF BFCO 0200 + 100
(unmapped, uncached) (unmapped, uncached)
| e |
A
Comments

* Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled
Service Code * OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET'’s branch delay slot

* PC <- ErrorEPC; ERL <- 0
* LLbit<-0

Servicing Guidelines (SW)

ERET

Figure 5-22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)

MIPS R4000 Microprocessor User's Manual 149

Chapter 5

Soft Reset or NMI Exception Reset Exception
Status: Random <- TLBENTRIES - 1

BEV<-1 Wired <- 0
TS<-0 Config <- Update(31:6)|| Undef(5:0)
SR<-1 Status:
ERL<-1 BEV <-1

CacheErr(EW) <- 0 =0

(Sﬁ4%or<r)(n|y)) SR<-0

ERL <-1

CacheErr(EW) <- 0
(R4400 only)

A

»
' o

Y
ErrorEPC <- PC

A

PC <- OXFFFF FFFF BFCO 0000

Reset, Soft Reset & NMI Exception Handling (HW)

Yes

Note: There is no indication from the

processor to differentiate between
NMI & Soft Reset; o
there must be a system level indication.

Status bit 20
(SR)

NMI Service Code

Reset, Soft Reset & NMI
Servicing Guidelines (SW)

) Soft Reset Service Code Reset Service Code
(Optional) ERET

Figure 5-23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW)

150 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

This chapter describes the MIPS floating-point unit (FPU) features,
including the programming model, instruction set and formats, and the
pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic. In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions.

MIPS R4000 Microprocessor User's Manual 151

Chapter 6

6.1 Overview

The FPU operates as a coprocessor for the CPU (it is assigned coprocessor
label CP1), and extends the CPU instruction set to perform arithmetic
operations on floating-point values.

Figure 6-1 illustrates the functional organization of the FPU.

Data Cache
FCU
y 64 Control
4 64 v
o A
FP Bypass
Pipeline Chain
Y Y \ 2 |
FP Mul FP Div
64
64
FP Reg File '

Figure 6-1 FPU Functional Block Diagram

152 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

6.2 FPU Features

This section briefly describes the operating model, the load/store
instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

= Full 64-bit Operation. When the FR bit in the CPU Status
register equals 0, the FPU is in 32-bit mode and contains thirty-
two 32-bit registers that hold single- or, when used in pairs,
double-precision values. When the FR bit in the CPU Status
register equals 1, the FPU is in 64-bit mode and the registers
are expanded to 64 bits wide. Each register can hold single- or
double-precision values. The FPU also includes a 32-bit Control/
Status register that provides access to all IEEE-Standard
exception handling capabilities.

= Load and Store Instruction Set. Like the CPU, the FPU uses a
load- and store-oriented instruction set, with single-cycle load
and store operations. Floating-point operations are started in a
single cycle and their execution overlaps other fixed-point or
floating-point operations.

= Tightly Coupled Coprocessor Interface. The FPU resides on-
chip to form a tightly coupled unit with a seamless integration
of floating-point and fixed-point instruction sets. Since each
unit receives and executes instructions in parallel, some
floating-point instructions can execute at the same single-cycle-
per-instruction rate as fixed-point instructions.

MIPS R4000 Microprocessor User's Manual 153

Chapter 6

6.3 FPU Programming Model

This section describes the set of FPU registers and their data organization.
The FPU registers include Floating-Point General Purpose registers (FGRSs)
and two control registers: Control/Status and Implementation/Revision.

Floating-Point General Registers (FGRs)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that
can be accessed in the following ways:

As 32 general purpose registers (32 FGRs), each of which is 32
bits wide when the FR bit in the CPU Status register equals 0;
or as 32 general purpose registers (32 FGRs), each of which is
64-bits wide when FR equals 1. The CPU accesses these
registers through move, load, and store instructions.

As 16 floating-point registers (see the next section for a
description of FPRs), each of which is 64-bits wide, when the
FR bit in the CPU Status register equals 0. The FPRs hold
values in either single- or double-precision floating-point
format. Each FPR corresponds to adjacently numbered FGRs
as shown in Figure 6-2.

As 32 floating-point registers (see the next section for a
description of FPRs), each of which is 64-bits wide, when the
FR bit in the CPU Status register equals 1. The FPRs hold
values in either single- or double-precision floating-point
format. Each FPR corresponds to an FGR as shown in
Figure 6-2.

154

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Floating-Point Floating-Point
Registers (FPR) General Purpose Registers
(FR=0)

31 (FGR) 0
FPRO (least) FGRO
(most) FGR1
FPR2 (least) FGR2
(most) FGR3
(least)
FPR28
(most)
Fpr3o { (Ieash
(most)

Floating-Point Floating-Point
Registers (FPR) General Purpose Registers
(FR=1)

FPRO FGRO
FPR1 FGR1
FPR2 FGR2
FPR3 FGR3

. []

. []

. []
FPR28 FGR28
FPR29 FGR29
FPR30 FGR30
FPR31 FGR31

Floating-Point

Co

Control/Status Register
FCR31

I

31 0

ntrol Registers

(FCR) . . .
Implementation/Revision Register

31 FCRO 0

E—

Figure 6-2 FPU Registers

MIPS R4000 Microprocessor User's Manual

155

Chapter 6

Floating-Point Registers

The FPU provides:

= 16 Floating-Point registers (FPRs) when the FR bit in the Status
register equals 0, or

= 32 Floating-Point registers (FPRs) when the FR bit in the Status
register equals 1.

These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR references
a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point
format. If the FR bit equals 0, only even numbers (the least register, as
shown in Figure 6-2) can be used to address FPRs. When the FR bit is set
to a1, all FPR register numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation,
the general registers are accessed in double pairs. Thus, in a double-
precision operation, selecting Floating-Point Register 0 (FPRO) actually
addresses adjacent Floating-Point General Purpose registers FGRO and
FGR1.

156

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Floating-Point Control Registers
The FPU has 32 control registers (FCRs) that can only be accessed by move
operations. The FCRs are described below:

= The Implementation/Revision register (FCROQ) holds revision
information about the FPU.

= The Control/Status register (FCR31) controls and monitors
exceptions, holds the result of compare operations, and
establishes rounding modes.

e FCR1 to FCR30 are reserved.
Table 6-1 lists the assignments of the FCRs.

Table 6-1 Floating-Point Control Register Assignments

FCR Number Use
FCRO Coprocessor implementation and revision register
FCR1to FCR30 | Reserved
FCR31 Rounding mode, cause, trap enables, and flags

MIPS R4000 Microprocessor User's Manual 157

Chapter 6

Implementation and Revision Register, (FCRO0)

The read-only Implementation and Revision register (FCRO) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also be
used by diagnostic software.

Figure 6-3 shows the layout of the register; Table 6-2 describes the
Implementation and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO)
31 16 15 87 0

0 Imp ‘ Rev
16 8 8

Figure 6-3 Implementation/Revision Register

Table 6-2 FCRO Fields

Field Description
Imp Implementation number (0x05)
Rev Revision number in the form of y.x

Reserved. Must be written as zeroes, and returns zeroes
when read.

The revision number is a value of the form y.x, where:
« yis a major revision number held in bits 7:4.
= X is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, MIPS
does not guarantee that changes to its chips are necessarily reflected by the
revision number, or that changes to the revision number necessarily reflect
real chip changes. For this reason revision number values are not listed,
and software should not rely on the revision number to characterize the
chip.

158 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status
information that can be accessed by instructions in either Kernel or User
mode. FCR3L1 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any
exceptions that may have occurred without being trapped.

Figure 6-4 shows the format of the Control/Status register, and Table 6-3
describes the Control/Status register fields. Figure 6-5 shows the Control/
Status register Cause, Flag, and Enable fields.

Control/Status Register (FCR31)

31 25 24 23 22 18 17 12 11 7 6 21 0
Cause Enables Flags RM
FS| C 0 EVZOUI| VZOUI | VZOUI
1 1 5 6 5 5 2
Figure 6-4 FP Control/Status Register Bit Assignments
Table 6-3 Control/Status Register Fields
Field Description
Es When set, denormalized results are flushed to 0 instead of causing an
unimplemented operation exception.
C Condition bit. See description of Control/Status register Condition bit.
Cause bits. See Figure 6-5 and the description of Control/Status register
Cause .
Cause, Flag, and Enable bits.
Enable bits. See Figure 6-5 and the description of Control/Status register
Enables .
Cause, Flag, and Enable bits.
Flaas Flag bits. See Figure 6-5 and the description of Control/Status register
9 Cause, Flag, and Enable bits.
RM Rounding mode bits. See Table 6-4 and the description of Control/Status
register Rounding Mode Control bits.

MIPS R4000 Microprocessor User's Manual 159

Chapter 6

Bit#17 16 15 14 13 12

Cause
I E \ Z 0) | Bits
[I I I I
Bit # 11 10 9 8 7
| Enable
\ Z ®) U | Bits
I I I I I
Bit # 6 5 4 3 2
Flag
\% Z O) | Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure 6-5 Control/Status Register Cause, Flag, and Enable Fields

Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-executed
after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to the
register using a Move Control To Coprocessor 1 (CTC1) instruction.
FCR31 must only be written to when the FPU is not actively executing
floating-point operations; this can be ensured by reading the contents of
the register to empty the pipeline.

160

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect certain
exceptional cases, raise flags, and can invoke an exception handler when
an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status
register. The Flag bits implement IEEE 754 exception status flags, and the
Cause and Enable bits implement exception handling.

Control/Status Register FS Bit

When the FS bit is set, denormalized results are flushed to 0 instead of
causing an unimplemented operation exception.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored
at bit 23, the Condition bit, to save or restore the state of the condition line.
The C bit is set to 1 if the condition is true; the bit is cleared to 0 if the
condition is false. Bit 23 is affected only by compare and Move Control To
FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields

Figure 6-5 illustrates the Cause, Flag, and Enable fields of the Control/Status
register.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in
Figure 6-5, which reflect the results of the most recently executed
instruction. The Cause bits are a logical extension of the CPO Cause register;
they identify the exceptions raised by the last floating-point operation and
raise an interrupt or exception if the corresponding enable bit is set. If
more than one exception occurs on a single instruction, each appropriate
bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

MIPS R4000 Microprocessor User's Manual 161

Chapter 6

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are set. A floating-point operation that sets an
enabled Cause bit forces an immediate exception, as does setting both
Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear
the enabled Cause bits with a CTC1 instruction to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits

The Flag bits are cumulative and indicate that an exception was raised by
an operation that was executed since they were explicitly reset. Flag bits
are setto 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

When a floating-point exception is taken, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting
these bits before invoking a user handler.

162

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode

(RM) field.

As shown in Table 6-4, these bits specify the rounding mode that the FPU
uses for all floating-point operations.

Table 6-4 Rounding Mode Bit Decoding

Rounding
Mode Mnemonic Description
RM(1:0)

Round result to nearest representable

0 RN value; round to value with least-
significant bit 0 when the two nearest
representable values are equally near.
Round toward 0: round to value closest to

1 RZ and not greater in magnitude than the
infinitely precise result.
Round toward +o0: round to value closest

2 RP to and not less than the infinitely precise
result.
Round toward — : round to value closest

3 RM to and not greater than the infinitely
precise result.

MIPS R4000 Microprocessor User's Manual

163

Chapter 6

6.4 Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-
precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6-6.

31 30 23 22 0
S e f

Sign Exponent Fraction
1 8 23

Figure 6-6 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction
field (f+s) and an 11-bit exponent, as shown in Figure 6-7.

63 62 52 51 0
S e f
Sign Exponent Fraction
1 11 52

Figure 6-7 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

« sign field, s
= biased exponent, e = E + bias
= fraction, f = .bby...bp 4
The range of the unbiased exponent E includes every integer between the

two values Ej, and E,54 inclusive, together with two other reserved
values:

* Epin -1 (to encode 0 and denormalized numbers)
e Emqax +1 (to encode “ and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero
numerical value has just one encoding.

164 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6-5.

Table 6-5 Equations for Calculating Values in Single and Double-Precision
Floating-Point Format

No. Equation

(1) |ifE=Emna*1landfz0,then vis NaN, regardless of s

(2) |IfE=Empatlandf=0,then v=(-1)°w

(3) | if Eqin < E < Emayx then v= (=1)525(1.9)

(4) |ifE=Emn—1andf#0,then v=(-1)S2E™"(0.5

(5) |ifE=Ep—1andf=0, then v=(-1)°0

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.

Table 6-6 defines the values for the format parameters; minimum and
maximum floating-point values are given in Table 6-7.

Table 6-6 Floating-Point Format Parameter Values

Parameter - Format
Single Double

Emax +127 +1023
Emin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
f (Fraction width in bits) 24 53
Format width in bits 32 64

MIPS R4000 Microprocessor User's Manual

165

Chapter 6

Table 6-7 Minimum and Maximum Floating-Point Values

Type Value
Float Minimum 1.40129846e-45
Float Minimum Norm 1.17549435e-38
Float Maximum 3.40282347e+38
Double Minimum 4.9406564584124654e-324
Double Minimum Norm 2.2250738585072014e-308
Double Maximum 1.7976931348623157e+308

6.5 Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned
fixed-point values are not directly provided by the floating-point
instruction set. Figure 6-8 illustrates binary fixed-point format; Table 6-8
lists the binary fixed-point format fields.

31 30 0
Sign Integer l
1 31

Figure 6-8 Binary Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 6-8 Binary Fixed-Point Format Fields

Field Description
sign sign bit
integer integer value

166 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

6.6 Floating-Point Instruction Set Overview

All FPU instructions are 32 bits long, aligned on a word boundary. They
can be divided into the following groups:

Load, Store, and Move instructions move data between
memory, the main processor, and the FPU General Purpose
registers.

Conversion instructions perform conversion operations
between the various data formats.

Computational instructions perform arithmetic operations on
floating-point values in the FPU registers.

Compare instructions perform comparisons of the contents of
registers and set a conditional bit based on the results.

Branch on FPU Condition instructions perform a branch to the
specified target if the specified coprocessor condition is met.

In the instruction formats shown in Tables 6-9 through 6-12, the fmt
appended to the instruction opcode specifies the data format: S specifies
single-precision binary floating-point, D specifies double-precision binary
floating-point, W specifies 32-bit binary fixed-point, and L specifies 64-bit
(long) binary fixed-point.

Table 6-9 FPU Instruction Summary: Load, Move and Store Instructions

OpCode Description
LWC1 Load Word to FPU
SWC1 Store Word from FPU
LDC1 Load Doubleword to FPU
SDC1 Store Doubleword From FPU
MTC1 Move Word To FPU
MFC1 Move Word From FPU
CTC1 Move Control Word To FPU
CFC1 Move Control Word From FPU
DMTC1 Doubleword Move To FPU
DMFC1 Doubleword Move From FPU

MIPS R4000 Microprocessor User's Manual 167

Chapter 6

Table 6-10 FPU Instruction Summary: Conversion Instructions

OpCode Description
CVT.S.fmt Floating-point Convert to Single FP
CVT.D.fmt Floating-point Convert to Double FP
CVT.W.fimt Floating-point Convert to 32-bit Fixed Point
CVT.L.fmt Floating-point Convert to 64-bit Fixed Point
ROUND.W.fmt Floating-point Round to 32-bit Fixed Point
ROUND.L.fmt Floating-point Round to 64-bit Fixed Point
TRUNC.W.fmt Floating-point Truncate to 32-bit Fixed Point
TRUNC.L.fmt Floating-point Truncate to 64-bit Fixed Point
CEIL.W.fmt Floating-point Ceiling to 32-bit Fixed Point
CEIL.L.fmt Floating-point Ceiling to 64-bit Fixed Point
FLOOR.W.fmt Floating-point Floor to 32-bit Fixed Point
FLOOR.L.fmt Floating-point Floor to 64-bit Fixed Point

Table 6-11 FPU

Instruction Summary: Computational Instructions

OpCode Description
ADD.fmt Floating-point Add
SUB.fmt Floating-point Subtract
MUL.fmt Floating-point Multiply
DIV.fmt Floating-point Divide
ABS.fmt Floating-point Absolute Value
MOV.fmt Floating-point Move
NEG.fmt Floating-point Negate
SQRT.fmt Floating-point Square Root

Table 6-12 FPU Instruction Summary: Compare and Branch Instructions

OpCode Description
C.cond.fmt Floating-point Compare
BC1T Branch on FPU True
BC1F Branch on FPU False
BC1TL Branch on FPU True Likely
BC1FL Branch on FPU False Likely

168

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the load, store
and move instructions listed in Table 6-9; Appendix B provides a detailed
description of each instruction.

Transfers Between FPU and Memory
All data movement between the FPU and memory is accomplished by
using one of the following instructions:

= Load Word To Coprocessor 1 (LWC1) or Store Word From
Coprocessor 1 (SWC1) instructions, which reference a single
32-bit word of the FPU general registers

e Load Doubleword (LDC1) or Store Doubleword (SDC1)
instructions, which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions
are performed and therefore no floating-point exceptions can occur due to
these operations.

Transfers Between FPU and CPU
Data can also be moved directly between the FPU and the CPU by using
one of the following instructions:
< Move To Coprocessor 1 (MTC1)
= Move From Coprocessor 1 (MFC1)
= Doubleword Move To Coprocessor 1 (DMTC1)
< Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Load Delay and Hardware Interlocks

The instruction immediately following a load can use the contents of the
loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is
desirable, although it is not required for functional code.

MIPS R4000 Microprocessor User's Manual 169

Chapter 6

Data Alignment

All coprocessor loads and stores reference the following aligned data
items:

= For word loads and stores, the access type is always WORD,
and the low-order 2 bits of the address must always be 0.

= For doubleword loads and stores, the access type is always
DOUBLEWORD, and the low-order 3 bits of the address must
always be 0.

Endianness

Regardless of byte-numbering order (endianness) of the data, the address
specifies the byte that has the smallest byte address in the addressed field.
For a big-endian system, it is the leftmost byte; for a little-endian system,
it is the rightmost byte.

Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data
formats such as single- or double-precision, fixed- or floating-point
formats. Table 6-10 lists conversion instructions; Appendix B gives a
detailed description of each instruction.

Floating-Point Computational Instructions

Computational instructions perform arithmetic operations on floating-
point values, in registers. Table 6-11 lists the computational instructions
and Appendix B provides a detailed description of each instruction. There
are two categories of computational instructions:

= 3-Operand Register-Type instructions, which perform floating-
point addition, subtraction, multiplication, and division

= 2-Operand Register-Type instructions, which perform floating-
point absolute value, move, negate, and square root operations

Branch on FPU Condition Instructions

Table 6-12 lists the Branch on FPU (coprocessor unit 1) condition
instructions that can test the result of the FPU compare (C.cond)
instructions. Appendix B gives a detailed description of each instruction.

170 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, ft) in the specified format (fmt) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction.

Table 6-12 lists the compare instructions; Appendix B gives a detailed
description of each instruction. Table 6-13 lists the mnemonics for the
compare instruction conditions.

Table 6-13 Mnemonics and Definitions of Compare Instruction Conditions
Mnemonic Definition Mnemonic Definition
T True F False
OR Ordered UN Unordered
NEQ Not Equal EQ Equal
Ordered or Less Than or
OLG Greater Than UEQ Unordered or Equal
UGE Unordered or Greater Than oLT Ordered Less Than
or Equal
OGE Ordered Greater Than ULT Unordered or Less Than
UGT Unordered or Greater Than | OLE Ordered Less Than or Equal
OGT Ordered Greater Than ULE Unordered or Less Than or
Equal
ST Signaling True SF Signaling False
GLE Greater Than, or Less Than NGLE Not Greater Than or Less
or Equal Than or Equal
SNE Signaling Not Equal SEQ Signaling Equal
GL Greater Than or Less Than NGL Not Greater Than or Less
Than
NLT Not Less Than LT Less Than
GE Greater Than or Equal NGE Not Greater Than or Equal
NLE Not Less Than or Equal LE Less Than or Equal
GT Greater Than NGT Not Greater Than

MIPS R4000 Microprocessor User's Manual

171

Chapter 6

6.7 FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU

instruction pipeline. It shares th
with the CPU (see Chapter 3).

Instruction Execution

Figure 6-9 illustrates the 8-instru

PCycle
MasterClock (8-Deep)
Cycle ‘ ‘

| IF] IS|RF|EX|DF| DS| TC | WB

e same eight-stage pipeline architecture

ction overlap in the FPU pipeline.

| IF] IS|RF|EX|DF| DS| TC

| IF] IS|RF| EX| DF | DS

| IF | IS| RF| EX| DF

WB |
TC [WB |
DS | TC [WB |

| IF | IS | RF| EX

DF | DS [TC [WB |

[IF]IS|RF

EX| DF[DS | TC |WB |

[IF| IS

RF| EX|DF | DS | TC | WB|

IF

IS | RF|EX| DF [DS | TC | WB]|

Current
CPU
Cycle

Figure 6-9 FPU Instruction Pipeline

Figure 6-9 assumes that one instruction is completed every PCycle. Most
FPU instructions, however, require more than one cycle in the EX stage.
This means the FPU must stall the pipeline if an instruction execution
cannot proceed because of register or resource conflicts.

Figure 6-10 illustrates the effect of a three-cycle stall on the FPU pipeline.

172

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

| IF| 1s [RF |Ex | DF [stall [stall [stall | bs | TC | wB|

| IF| 1s | RF | Ex |stall |stall [stall | DF |ps | TC| wB |

[F| 1s | rF [stall[stall[stall | Ex | oF | ps| Tc | wB]

| IF| 1s |stall|stall [stall | RF [EX | DF| Ds| TC | wB |

‘ IE stall‘stall‘stall IS ‘ RF ‘ Ex‘ DF‘ DS ‘ TC ‘WB‘
Figure 6-10 FPU Pipeline Stall

To lessen the performance impact that results from stalling the instruction
pipeline, the FPU allows instructions to overlap so that instruction
execution can proceed as long as there are no resource conflicts, data
dependencies, or exception conditions. The following sections describe
the timing and overlapping of FPU instructions.

Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle,
more time may be required to execute FPU instructions.

Table 6-14 gives the minimum latency, in processor pipeline cycles, of each
floating-point operation for the currently implemented configurations.
These latency calculations assume the result of the operation is
immediately used in a succeeding operation.

MIPS R4000 Microprocessor User's Manual 173

Chapter 6

Table 6-14 Floating-Point Operation Latencies

Operation Pipeline Cycles Operation Pipeline Cycles
S| D|W]|L S D | W L
ADD.fmt 4 4 @ | @ |CVT[W,L]fmt |4 4 (@) (@)
SUB.fmt 4 4 (@ | (@ | C.fmt.cond 3 3 (@ (@)
MUL.fmt 7 |8 (@ | (@ |BCiT (b) |1 (b) | (b)
DIV.fmt 23 |36 |(a) |(a) | BCIF) (1 (b) | (b)
SQRT.fmt 54 | 112 | (@) | (a) | BC1TL) (1 (b) | (b)
ABS.fmt 2 2 (@ | (a) | BCIFL (b) |1 (b) | (b)
MOV.fmt 1 1 @ | (@ |LwcCl () |3 (b) | (b)
NEG.fmt 2 2 @ |@ |swcl) (1 (b) | (b)
ROUND.[W,L].fmt |4 |4 (@ |(a |LDC1 (b) |3 (b) | (b)
TRUNC.[W,L]fmt (4 |4 @ | (@ |sDcC1) (1 (b) | (b)
CEIL.JW,L].fmt 4 |4 @ (@@ |MTC1 () |3 (b) | (b)
FLOOR.[W,L]fmt |4 |4 @ | (@ | MFC1 (b) |3 (b) | (b)
CVT.S.fmt @ |4 6 7 CTC1 () |3 (b) | (b)
CVT.D.fmt 2 (@ |5 4 CFC1 (b) (2 (b) | (b)
@)-........ These operations are illegal.
(b)........ These operations are undefined.

174 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Scheduling FPU Instructions

The floating-point architecture permits the overlapping of floating-point
load, store, and move instructions with some of the other processor
operations.

To permit this, the FPU coprocessor implements three separate operation
(op) units:

= divider

= multiplier

= adder (for remaining operations)

The multiplier and divider can overlap adder operations; however, they
use the adder on their final cycles, which imposes some limitations.

The multiplier can begin a new double-precision multiplication every four
cycles, and a new single-precision multiplication every three cycles. The
adder generally begins a new operation one cycle before the previous
cycle completes; therefore, a floating-point addition or subtraction can
start every three cycles.

The FPU coprocessor pipeline is fully bypassed and interlocked.

FPU Pipeline Overlapping

Each of the three op units is controlled by an FPU resource scheduler,
which issues instructions under constraints described in the following
section. Table 6-15 lists the pipe stages used in each of the op units
(although not all stages are used by each unit).

Table 6-15 FPU Operational Unit Pipe Stages

Stage Description
A FPU Adder Mantissa Add stage
E FPU Adder Exception Test stage
EX CPU EX stage

M FPU Multiplier 1st stage

N FPU Multiplier 2nd stage

R FPU Adder Result Round stage
S

U

FPU Adder Operand Shift stage
FPU Unpack stage

MIPS R4000 Microprocessor User's Manual 175

Chapter 6

Instruction Scheduling Constraints

The FPU resource scheduler is kept from issuing instructions to the FPU
op units (adder, multiplier, and divider) by the limitations in their micro-
architectures. If any of the following constraints are violated, the op unit
assumes the outstanding instruction in its pipe is discarded, and then
continues operation on the most recently issued instruction.

FPU Divider Constraints

The FPU divider can handle only one non-overlapped division instruction
in its pipe at any one time.

FPU Multiplier Constraints

The FPU multiplier allows up to two pipelined MUL.[S,D] instructions to
be processed as long as the following constraints are met:

< Two idle cycles are required after a MUL.S instruction (as
shown in Figure 6-11).

= Three idle cycles are required after MUL.D instruction (as
shown in Figure 6-12).

These figures are not meant to imply that back-to-back multiplications are
allowed. Rather, as shown in Figure 6-11, instructions 12 and 13 are illegal
and 15, 16, 17, and 18 are successive stages of 14, referenced to I1.

Figure 6-12 is similar, in that 16, 17, and 18 are successive stages of 15.

MULS 1 U M| M| M]|N [NA[R | Legal to Issue?
mMuLisD] 2l U MIMIM[M[N[NA[R | ————————————————- No
MUL.[S.D] B[U[M[M|[M[M[N[NA[R | —————————mm——— No
MUL.[S.D] MU MIMIMIMINIWA[R | ——————————~ Yes
MUL.[S.D] 5lulMIM[MIM[NINA[R |--==--——- Yes
MUL.[S.D] 6lu[M| MIM][M]NINA[R]--=---- Yes
MUL.[S.D] 7[ulmIMI[M[M][NIWA[R | -==VYes
MUL.[S.D] Blul MMM M]NINA[R | vYes

Figure 6-11 MUL.S Instruction Scheduling in the FPU Multiplier

176

MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

MULD 1l U [M| M[M]|M[N[NA[R] Legal to Issue?
MUL[SD] R2[u[M[M[M]IM]IN|NA[R] - ———- No
MUL.[S.D] BlulM[MIM[M[NI[NA[R] ===~ No
MUL.[S.D] Blu[M[MIMIMININAIR] ——————————— No
MUL.[S.D] slulm[mIm[m][N][NwA[R J---mmmmm Yes
MUL.[S.D] 6lu[m[mMImM[m[NI[NnA[R |-~~~ Yes
MUL.[S.D] 7lulm[m[m]m[N[wA[R |~~~ ves
MUL.[S.D] BLu[MIMIM[MININWA[R | ves

Figure 6-12 MUL.D Instruction Scheduling in the FPU Multiplier

FPU Adder Constraints

Following are the constraints that must be met in the FPU adder op unit.

Cycle Overlap. The adder op unit must allow a clock cycle overlap
between each newly issued instruction and the instruction being
completed, as shown in Figure 6-13.

NEG.[SD] U | S |

ADD.[SD] | U |s+Ala+R|R+S|

NOP

NOP

C.COND.[S,D] lu[AR]
NOP

SQRT.[S,D] [u | E [A+R[...[A+R] R]
NOP
NOP o -U

ADD.[S,D]

luls[alr]

Figure 6-13 Instruction Cycle Overlap in FPU Adder

MIPS R4000 Microprocessor User's Manual 177

Chapter 6

Resource Conflict. The adder must allow the cleanup stages (A, R) of a
multiplication instruction to be pipelined with the execution of an
ADD.[S,D], SUB.[S,D], or C.COND.[S,D] instruction, as long as no two
instructions simultaneously attempt to use the same A and R pipe stages.
For instance, Figure 6-14 shows a resource conflict between the mantissa
add (A, stage 7) of instructions 1, 5, and 6. This figure also shows the
resource conflict between result round (R), stage 8, of instructions 1, 5, and
6. The multiplication cleanup cycles (A, R) can neither overlap nor
pipeline with any other instruction currently in the adder pipe.

Figures 6-14 through 6-17 show these constraints.

Stage#
1 2 3 4 5 6 7 8 9 10 11 Legal to Issue?

MULD 11 U [M[M[M[M][NI[NA] R]
ADD.[SD] 12| U [S+AJA+R]R+S| ——F—H-—F e Yes
13| U [s+Ala+R[R+S|| —H-—F -~ Yes
14| U [S+AJA+R[R+S|| —F———— o Yes
15| U [s+AA+R[R+S] - ———— - No
6] U [StA|A+R|R+S| -——--——-——————- No
17| U [s+AlA+R[R+S| ————------- Yes

¢ Indicates a resource conflict
18] U [S+AJA+R[R+S| ————————~ Ves

Figure 6-14 MUL.D and ADD.[S,D] Cycle Conflict in FPU Adder

Stage#

1 2 3 4 5 6 7 8 9 10 11 Legal to Issue?

mMuLs 1l u [M| M| M[NINA] R]
ADD.[SD] 12/ U [s+AlA+R[R+S]|| -4 4-t--mmm e Yes
13 U [s+Ala+R|R+S| |-+ -————— - Yes
14| U [S+AA+R[R+S| —— - o No
15| U [s+tA[A+R[R+S| ———————————— No
16 U [S+A[A+R[R+S] —————————————— Yes
17 U [s+AJA+R|R+S| -——-———-——- Yes

¢ Indicates a resource conflict
18] U [s+AJA+R|R+S| ————————- Ves

Figure 6-15 MUL.S and ADD.[S,D] Cycle Conflict in FPU Adder

178 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Stage#

1 2 3 4 5 6 7 8 9 10 Legal to Issue?
MULDIf U M[M[M[M]NINA[R,]

cMP[sD] 12l u [A[R]| --—-—-—-- A Yes
T N N R e
4[UTATR] ~pmrfommmmmmmmm e ves
sy AlR| -~ Nof
6 U | AY RY -——-—————————— No
¢ Indicates a resource conflict |7 ___________ Yes
o[ulalR] --------

"While there is no resource conflict in issuing this CM
not allow it.

P.[S,D] instruction, the hardware does

Figure 6-16 MUL.D and CMP.[S,D] Cleanup Cycle Conflict in FPU Adder

Stage#

1 2 3 4 5 6 7 8 9 10 Legal to Issue?

MULSIL U[M| M|[M]NI[NAIR,]
CMP[SD] 12l U | A[R | === i i Yes
B[U] AR ~f-—f-mmmmmmmmmmmm oo Yes
] A|R] - No'
5 U [A RY ——=——————-=—-—--- No
eulAa[R] ——7————————- Yes
¢ Indicates a resource conflict |7 ___________ Yes
[0 A R] " ves

"While there is no resource conflict in issuing this CM
not allow it.

Figure 6-17 MUL.S and CMP.[S,D] Cleanu

P.[S,D] instruction, the hardware does

p Cycle Conflict in FPU Adder

MIPS R4000 Microprocessor User's Manual

179

Chapter 6

Prep and Cleanup Cycle Overlap. The adder does not allow the

preparation (U stage) and cleanup cycles (N, A, R) of a division instruction
to be pipelined with any other instruction; however, the adder does allow
the last cycle of preparation or cleanup to be overlapped one clock by the
following instruction’s U stage (the CPU EX cycle). Figure 6-18 shows this

process.

pivD| U [A [R+D[D] D[...] D |[aA+D|R+DA+D|R+D] A | R |

or
DivD [U [A |s+R|s+D] D[...| D |a+D[R+DA+D|R+D] A [R |
NOP
NOP Tu]
ADD.[S,D] | U [s+AlAa+R|[R+S]
NOP
NOP
CMP.[S,D] ulA[R]

Figure 6-18 Adder Prep and Cleanup Cycle Overlap

180 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

Instruction Latency, Repeat Rate, and Pipeline Stage Sequences

Table 6-16 lists the latency and repeat rate between instructions, together
with the sequence of pipeline stages for each instruction. For example, the
latency of the ADD.[S,D] is 4, which means it takes four processor cycles
to complete. The Repeat Rate column indicates how soon an instruction
can be repeated; for example, an ADD.[S,D] can be repeated after the
conclusion of the third pipeline stage.

Table 6-16 Latency, Repeat Rate, and Pipe Stages of FPU Instructions

Instruction Type Latency ngtest P'gi'(;ﬂif;:ge
MOV.[S,D] 1 1 EX
ADD.[S,D] 4 3 U- S+A- A+R- R+S
SUB.[S,D] 4 3 U- S+A- A+R- R+S
C.COND.[S,D] 3 2 U->A-R
NEG.[S,D] 2 1 U-S
ABS.[S,D] 2 1 U- S
CVT.S.\W 6 5 U- A5 R SS5 ASR
CVT.D.W 5 4 U-S-A-R- S
CVTS.L 7 6 U Ao R- S-S5 ASR
CVTD.L 4 3 U-A-R-S S
CVT.D.S 2 1 U-S
CVT.S.D 4 3 U- S5 AS R
CVT.[W,L].[S,D] or
ROUND.[W,L].[S,D] or
TRUNC.[W,L].[S,D] or 4 3 U-S-A-R
CEIL.[W,L].[S,D] or
FLOOR.[W,L].[S,D]
MUL.S 7 3 Us EIM> Mo Mo N NJAS R
MUL.D 8 4 Us EIMSs Mo Mo Mo Ns NJAS R

- S+A_ S+R- S~ D..D- N

NN e
DIV.D 36 35 B/Rf A_R) RD...D D/A- D/IR - D/IA
SQRT.S 2-54 2-53 Us E- A+tR- ..o AR AL R
SQRT.D 2-112 2-111 U- E- AtR->...- A+tR- AL R

MIPS R4000 Microprocessor User's Manual

181

Chapter 6

Resource Scheduling Rules

The FPU Resource Scheduler issues instructions while adhering to the
rules described below. These scheduling rules optimize op unit
executions; if the rules are not followed, the hardware interlocks to
guarantee correct operation.

DIV.[S,D] can start only when all of the following conditions are met in
the RF stage:
« The divider is either idle, or in its second-to-last execution cycle.
= The adder is either idle, or in its second-to-last execution cycle.

= The multiplier is either idle, or in its second-to-last execution
cycle.

Idle means an operation unit—adder, multiplier or divider—is either not
processing any instruction, or is currently in its last execution cycle
completing an instruction.

182 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

MUL.[S,D] can start only when all of the following conditions are met in
the RF stage:

= The multiplier is one of the following:
- idle, or in its second-to-last execution cycle.

- not within the first two execution cycles (EX, EX+1) if the
most recent instruction in the multiplier pipe is MUL.S

- not within the first three execution cycles (EX...EX+2) if
the most recent instruction in the multiplier pipe is
MUL.D

= The adder is one of the following:

- idle, or in its second-to-last execution cycle.

- not processing the first execution cycle (EX) of CVT.S.L
= The adder is not processing a square root instruction
« The divider is one of the following:

- idle, or in its second-to-last execution cycle.

- in the first 8 execution cycles (EX...EX+7) of a DIV.S

- in the first 21 execution cycles, except for the second
execution cycle, (cycles EX, EX+2...EX+20) of a DIV.D)

MIPS R4000 Microprocessor User's Manual 183

Chapter 6

SQRT.[S,D] can start only when all of the following conditions are metin
the RFstage:

< The divider is either idle, or in its second-to-last execution cycle.
= The adder is either idle, or in its second-to-last execution cycle.

= The multiplier is either idle, or in its second-to-last execution
cycle.

CVT.fmt, NEG.[S,D] or ABS.[S,D] instructions can only start when all of
the following conditions are met in the RF stage:

< The adder is either idle, or in its second-to-last execution cycle.

= The multiplier is either idle, or in its second-to-last execution
cycle.

= The divider is one of the following:
- idle, or in its second-to-last execution cycle.

- in the third through eighth execution cycle (EX+2...EX+7)
of a DIV.S

- in the third through twenty-first execution cycle
(EX+2...EX+20) of a DIV.D

184 MIPS R4000 Microprocessor User's Manual

Floating-Point Unit

ADD.[S,D], SUB.[S,D] or C.COND.[S,D] can only start when all of the
following conditions are met in the RF stage:

< The adder is either idle, or in its second-to-last execution cycle.
= The multiplier is one of the following:
- idle, or in its second-to-last execution cycle.

- not in the third or fourth execution cycles (EX+2...EX+3)
if the most recent instruction in the multiplier pipe is
MUL.S

- not in the fourth or fifth execution cycles (EX+3...EX+4) if
the most recent instruction in the multiplier pipe is
MUL.D

= The divider is one of the following:
- idle, or in its second-to-last execution cycle.

- in the third through eighth execution cycle (EX+2...EX+7)
of a DIV.S

- in the third through twenty-first execution cycle
(EX+2...EX+20) of a DIV.D

MIPS R4000 Microprocessor User's Manual 185

Chapter 6

186 MIPS R4000 Microprocessor User's Manual

Floating-Point Exceptions

This chapter describes FPU floating-point exceptions, including FPU
exception types, exception trap processing, exception flags, saving and
restoring state when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either
the operands or the results of a floating-point operation in its normal way.
The FPU responds by generating an exception to initiate a software trap or
by setting a status flag.

MIPS R4000 Microprocessor User's Manual 187

Chapter 7

7.1 Exception Types

The FP Control/Status register described in Chapter 6 contains an Enable bit
for each exception type; exception Enable bits determine whether an
exception will cause the FPU to initiate a trap or set a status flag.

= |fatrap is taken, the FPU remains in the state found at the
beginning of the operation and a software exception handling
routine executes.

= If no trap is taken, an appropriate value is written into the FPU
destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:
« Inexact (1)
= Underflow (U)
< Overflow (O)
= Division by Zero (2)
= Invalid Operation (V)
Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E), to
use when the FPU cannot implement the standard MIPS floating-point
architecture, including cases in which the FPU cannot determine the
correct exception behavior. This exception indicates the use of a software
implementation. The Unimplemented Operation exception has no Enable
or Flag bit; whenever this exception occurs, an unimplemented exception
trap is taken (if the FPU interrupt input to the CPU is enabled).

Figure 7-1 illustrates the Control/Status register bits that support
exceptions.

188

MIPS R4000 Microprocessor User's Manual

Floating-Point Exceptions

Bit#17 16 15 14 13 12

Cause
I E \ Z 0) | Bits
[I I I I
Bit # 11 10 9 8 7
| Enable
\ Z ®) U | Bits
I I I I I
Bit # 6 5 4 3 2
Flag
Z O) | Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation

Unimplemented Operation

Figure 7-1 Control/Status Register Exception/Flag/Trap/Enable Bits

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, |) is associated
with a trap under user control, and is enabled by setting one of the five
Enable bits. When an exception occurs, the corresponding Cause bit is set.
If the corresponding Enable bit is not set, the Flag bit is also set. If the
corresponding Enable bit is set, the Flag bit is not set and the FPU generates
an interrupt to the CPU. Subsequent exception processing allows a trap to
be taken.

7.2 Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates
the floating-point coprocessor is the cause of the exception trap. The
Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating-
point exception. These bits are, in effect, an extension of the system
coprocessor Cause register.

MIPS R4000 Microprocessor User's Manual 189

Chapter 7

7.3 Flags
A Flag bit is provided for each IEEE exception. This Flag bitissettoalon
the assertion of its corresponding exception, with no corresponding
exception trap signaled.
The Flag bit is reset by writing a new value into the Status register; flags
can be saved and restored by software either individually or as a group.
When no exception trap is signaled, floating-point coprocessor takes a
default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception. Table 7-1 lists the default action taken
by the FPU for each of the IEEE exceptions.
Table 7-1 Default FPU Exception Actions
Field | Description Rounding Default action
Mode
Inexact
| exception Any Supply a rounded result
Modify underflow values to 0 with the sign of the
RN . .
intermediate result
RZ Modify underflow values to 0 with the sign of the
U Underflow intermediate result
exception RP Modify positive underflows to the format’s smallest positive
finite number; modify negative underflows to -0
RM Modify negative underflows to the format’s smallest
negative finite number; modify positive underflows to 0
Modify overflow values to 0 with the sign of the
RN . .
intermediate result
Modify overflow values to the format’s largest finite number
Rz
o Overflow with the sign of the intermediate result
exception RP Modify negative overflows to the format’s most negative
finite number; modify positive overflows to + 00
RM Modify positive overflows to the format’s largest finite
number; modify negative overflows to — ©
z Division by Any Supply a properly signed oo
zero
Invalid .
\ operation Any Supply a quiet Not a Number (NaN)
190 MIPS R4000 Microprocessor User's Manual

Floating-Point Exceptions

The FPU detects the eight exception causes internally. When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).

Table 7-2 lists the exception-causing situations and contrasts the behavior
of the FPU with the requirements of the IEEE Standard 754.

Table 7-2 FPU Exception-Causing Conditions

FPA Internal IEEE Trap Trap
Standard . Notes
Result Enable | Disable
754
Inexact result | | | Loss of accuracy
Exponent overflow o,If O, o, Normalized exponent > Ej 44
Division by zero z z z Zero is (e>iponent = Emin-L,
mantissa = 0)
Overflow on convert \% E E Source out of integer range
Signaling NaN v v v
source
Invalid operation \Y \Y \ 0/0, etc.
Exponent underflow U E Uit Normalized exponent < Ein,
Denormalized or None E E Denormalized is (exponent =
QNaN Emin-1 and mantissa <> 0)

t The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow
trap is disabled.

1 Exponent underflow sets the U and | Cause bits if both the U and | Enable bits are not set
and the FS bit is set; otherwise exponent underflow sets the E Cause bit.

MIPS R4000 Microprocessor User's Manual 191

Chapter 7

7.4 FPU Exceptions

The following sections describe the conditions that cause the FPU to
generate each of its exceptions, and details the FPU response to each
exception-causing condition.

Inexact Exception (1)

The FPU generates the Inexact exception if one of the following occurs:
< the rounded result of an operation is not exact, or
= the rounded result of an operation overflows, or

= the rounded result of an operation underflows and both the
Underflow and Inexact Enable bits are not set and the FS bit is
set.

The FPU usually examines the operands of floating-point operations
before execution actually begins, to determine (based on the exponent
values of the operands) if the operation can possibly cause an exception. If
there is a possibility of an instruction causing an exception trap, the FPU
uses a coprocessor stall to execute the instruction.

Itisimpossible, however, for the FPU to predetermine if an instruction will
produce an inexact result. If Inexact exception traps are enabled, the FPU
uses the coprocessor stall mechanism to execute all floating-point
operations that require more than one cycle. Since this mode of execution
can impact performance, Inexact exception traps should be enabled only
when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

192 MIPS R4000 Microprocessor User's Manual

Floating-Point Exceptions

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands
are invalid for an implemented operation. When the exception occurs
without a trap, the MIPS ISA defines the result as a quiet Not a Number
(NaN). The invalid operations are:

= Addition or subtraction; magnitude subtraction of infinities,
suchas: (+o0)+ (-w)or(—o)= (-o)

< Multiplication: 0 times o, with any signs
= Division: 0/0, or o/, with any signs

= Comparison of predicates involving < or > without ?, when the
operands are unordered

= Comparison or a Convert From Floating-point Operation on a
signaling NaN.

= Any arithmetic operation on a signaling NaN. A move (MOV)
operation is not considered to be an arithmetic operation, but
absolute value (ABS) and negate (NEG) are considered to be
arithmetic operations and cause this exception if one or both
operands is a signaling NaN.

= Square root: Vx, where x is less than zero

Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands. Examples of
these operations include IEEE Standard 754-specified functions
implemented in software, such as Remainder: x REM y, where y is 0 or x is
infinite; conversion of a floating-point number to a decimal format whose
value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as In (-5) or cos-1(3). Refer to Appendix B for examples or
for routines to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: A quiet NaN is delivered to the destination
register if no other software trap occurs.

MIPS R4000 Microprocessor User's Manual 193

Chapter 7

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero number.
Software can simulate this exception for other operations that produce a
signed infinity, such as In(0), sec(1/2), csc(0), or oL

Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded
floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. (This exception also
sets the Inexact exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by
the rounding mode and the sign of the intermediate result (as listed in
Table 7-1).

194

MIPS R4000 Microprocessor User's Manual

Floating-Point Exceptions

Underflow Exception (U)

Two related events contribute to the Underflow exception:

= creation of a tiny nonzero result between +2EMiN \which can
cause some later exception because it is so tiny

= extraordinary loss of accuracy during the approximation of
such tiny numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but
requires they be detected the same way for all operations.

Tininess can be detected by one of the following methods:

- after rounding (when a nonzero result, computed as though
the exponent range were unbounded, would lie strictly
between +2EMin)

= before rounding (when a nonzero result, computed as though
the exponent range and the precision were unbounded, would
lie strictly between +2EMin),

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

= denormalization loss (when the delivered result differs
from what would have been computed if the exponent
range were unbounded)

= inexact result (when the delivered result differs from what
would have been computed if the exponent range and
precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an
inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the
FS bit is not set, then an Unimplemented exception (E) is generated, and
the result register is not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled
and the FS bit is set, the result is determined by the rounding mode and
the sign of the intermediate result (as listed in Table 7-1).

MIPS R4000 Microprocessor User's Manual 195

Chapter 7

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format
code that has been reserved for future definition sets the Unimplemented bit
in the Cause field in the FPU Control/Status register and traps. The operand
and destination registers remain undisturbed and the instruction is
emulated in software. Any of the IEEE Standard 754 exceptions can arise
from the emulated operation, and these exceptions in turn are simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

< Denormalized operand, except for Compare instruction
= Quiet Not a Number operand, except for Compare instruction

e Denormalized result or Underflow, when either Underflow or
Inexact Enable bits are set or the FS bit is not set.

< Reserved opcodes
< Unimplemented formats

= Operations which are invalid for their format (for instance,
CVTS.S)

NOTE: Denormalized and NaN operands are only trapped if the
instruction is a convert or computational operation. Moves do not trap
if their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in
early implementations. Loopholes are provided in the architecture so that
these conditions can be implemented with assistance provided by
software, maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results; This trap cannot be disabled.

196 MIPS R4000 Microprocessor User's Manual

Floating-Point Exceptions

7.5 Saving and Restoring State

Sixteen doubleword coprocessor load or store operations save or restore
the coprocessor floating-point register state in memory. The remainder of
control and status information can be saved or restored through Move To/
From Coprocessor Control Register instructions, and saving and restoring
the processor registers. Normally, the Control/Status register is saved first
and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending
instructions can cause an exception. If the pending instruction cannot be
completed, this instruction is placed in the Exception register, if present.
Information indicating the type of exception is placed in the Control/Status
register. When state is restored, state information in the status word
indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears all
pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only one
instruction; the FPU examines source operands before an operation is
initiated to determine if this instruction can possibly cause an exception. If
an exception is possible, the FPU executes the instruction in stall mode to
ensure that no more than one instruction (that might cause an exception)
is executed at a time.

MIPS R4000 Microprocessor User's Manual 197

Chapter 7

7.6 Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to
specify a trap handler for any of the five standard exceptions that can
compute; the trap handler can either compute or specify a substitute result
to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program Counter
(EPC) register, the trap handler determines:

= exceptions occurring during the operation
= the operation being performed
= the destination format

On Overflow or Underflow exceptions (except for conversions), and on
Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in
software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for both
the Inexact exception and the Overflow or Underflow exception.

198

MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

This chapter describes the signhals used by and in conjunction with the
R4000 processor. The signals include the System interface, the Clock/
Control interface, the Secondary Cache interface, the Interrupt interface,
the Joint Test Action Group (JTAG) interface, and the Initialization
interface.

Signals are listed in bold, and low active signals have a trailing asterisk—
for instance, the low-active Read Ready signal is RARdy*. The signal
description also tells if the signal is an input (the processor receives it) or
output (the processor sends it out).

Figure 8-1 illustrates the functional groupings of the processor signals.

MIPS R4000 Microprocessor User's Manual 199

Chapter 8

[SysAD(63:0) ﬁsé» SCData (127:0)
SySADC(7:0) =<—45—> SCDChk (15:0) =
SysCmd(8:0) <—~—» SCTag (24:0) g

9 SysCmdP <«——» SCTChk (6:0) “%
“% Validin* — SCAddr (17:1) £
E ValidOut* -~ SCAddrO (w,X,y,2) %
5 ExtRgst* —_— SCAPar(2:0) 8
(‘% Release* -~ SCOE* §
RdRdy* — SCWr(w,x,y,2)* §
WrRdy* — sScDCSs* A
IvdAck* @ ——» SCTCS*]
IvdErr* (3) —_— Q

—TCIock(l:O) 4% nts:1*@ | “g
RClock(1:0) <—#4— Int0* =
MasterClock ———> NMI* _ %
MasterOut ~ <-——— £
SyncOut - -

% Syncin - ModeClock <
T 100Ut ModelN = §
E 1oIn o VCCOk % 5
e Fault* - ColdReset* =
§ VccP — > Reset* _ |
E VssP —8>
© Status(7:0)) <«—~— 31D]
veeSense)« » JTDO (<_Ef) ‘%
vssSense M <« » JTMS = g—’»
- JTCK N
(1) = R4000SC and R4000MC only (2) = R4000PC only
(3) = R4000MC only (4) = R4400 only
Figure 8-1 R4000 Processor Signals
200 MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

8.1 System Interface Signals

System interface signals provide the connection between the R4000
processor and the other components in the system. IvdAck* and IvdErr*
signals are applicable only on R4000MC; on the R4000SC they must be tied
to Vce. The remaining signals are available on all three of the package

configurations.

Table 8-1 lists the system interface signals.

Table 8-1 System Interface Signals

Name

Definition

Direction

Description

ExtRgst*

External request

Input

An external agent asserts ExtRgst* to
request use of the System interface. The
processor grants the request by asserting
Release*.

IvdAck*

Invalidate
acknowledge

Input

An external agent asserts IvdAck* to
signal successful completion of a
processor invalidate or update request
(R4000MC only; tie to Vcc on R4000SC).

IvdErr*

Invalidate error

Input

An external agent asserts IvdErr* to
signal unsuccessful completion of a
processor invalidate or update request
(R4000MC only; tie to Vcc on R4000SC).

Release*

Release interface

Output

In response to the assertion of ExtRqst*,
the processor asserts Release*, signalling
to the requesting device that the System
interface is available.

RARdy*

Read ready

Input

The external agent asserts RARdy* to
indicate that it can accept processor read,
invalidate, or update requests in both
secondary-cache and no-secondary-cache
mode; or can accept a read followed by
write request, a read followed by a
potential update request, or a read
followed by a potential update followed
by a write request in secondary cache
mode.

SysAD(63:0)

System address/
data bus

Input/
Output

A 64-bit address and data bus for
communication between the processor
and an external agent.

MIPS R4000 Microprocessor User's Manual

201

Chapter 8

Table 8-1 (cont.) System Interface Signals

Name

Definition

Direction

Description

SysADC(7:0)

System address/
data check bus

Input/Output

An 8-bit bus containing
check bits for the SysAD
bus.

SysCmd(8:0)

System command/
data identifier

Input/Output

A 9-bit bus for command
and data identifier
transmission between the
processor and an external
agent.

SysCmdP

System command/
data identifier bus

parity

Input/Output

A single, even-parity bit for
the SysCmd bus. When the
System interface is set to
parity mode, the processor
also indicates a secondary
cache ECC error by
corrupting the state of the
SysCmdP signal.

ValidIn*

Valid input

Input

The external agent asserts
ValidIn* whenitisdrivinga
valid address or data on the
SysAD bus and a valid
command or data identifier
on the SysCmd bus.

ValidOut*

Valid output

Output

The processor asserts
ValidOut* when it is
driving a valid address or
dataonthe SysAD busanda
valid command or data
identifier on the SysCmd
bus.

WrRdy*

Write ready

Input

An external agent asserts
WrRdy* when it can accept
a processor write request.

t. The SysADC(7:0) bits map to the SysAD bus in this mann8ysADC(7) covers
SysAD(63:56) SysADC(6)coversSysAD(55:48) and so on down t8ysADC(0) which
coversSysAD(7:0)

202

MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

8.2 Clock/Control Interface Signals

The Clock/Control interface signals make up the interface for clocking
and maintenance. Table 8-2 lists the Clock/Control interface signals.

Table 8-2 Clock/Control Interface Signals

Name Definition Direction Description

Output slew rate control
feedback loop output. Must be
connected to 10In through a
delay loop that models the 1/0
path from the processor to an
external agent.

100ut 170 output Output

Output slew rate control
10In 170 input Input feedback loop input (see
100ut).

Master clock input that
MasterClock | Master clock Input establishes the processor
operating frequency.

Master clock output aligned
with MasterClock.

Two identical receive clocks that
RClock(1:0) | Receive clocks Output establish the System interface
frequency.

Synchronization clock output.
Must be connected to Syncln
through an interconnect that

MasterOut | Master clock out Output

Synchronization

SyncOut clock out Output models the interconnect
between MasterOut, TClock,
RClock, and the external agent.

Syncin Synchronization Input Synchronization clock input.

clock in

Two identical transmit clocks
TClock(1:0) | Transmit clocks Output that establish the System
interface frequency.

The processor asserts Fault* to
indicate a mismatch output of
Fault* Fault Output boundary comparators, and
indication of System interface
input parity or ECC errors.

MIPS R4000 Microprocessor User's Manual 203

Chapter 8

Table 8-2 (cont.) Clock/Control Interface Signals

Name Definition Direction Description
An 8-bit bus that indicates the
Status(7:0) | Status Output current operational status of the

processor. R4400 only.

Quiet Vcc for the internal phase

VccP Quiet Vcce for PLL Input locked loop.

A special pin used only in
component testing and
characterization,VccSense
provides a separate, direct
connection from the on-chip Vcc
node to a package pin, without
connecting to the in-package
power planes. Test fixtures treat
Input/ VccSense as an analog output
Output pin; the voltage at this pin
directly exhibits the behavior of
the on-chip Vcc. Thus,
characterization engineers can
easily observe the effects of Ai/
At noise, transmission line
reflections, etc. VccSense
should be connected to Vcc in
functional system designs.

VccSense Vce sense

Quiet Vss for the internal phase

VssP Quiet Vss for PLL Input locked loop.
VssSense provides a separate,
direct connection from the on-
chip Vss node to a package pin
Input/ without having to connect to the

VssSense Vss sense Output in-package ground planes.

VssSense should be connected
to Vss in functional system
designs.

204 MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

8.3 Secondary Cache Interface Signals

Secondary Cache interface signals constitute the interface between the
R4000 processor and secondary cache. These signals are available only on
the R4000MC and R4000SC. Table 8-3 lists the Secondary Cache interface
signals.

Table 8-3 Secondary Cache Interface Signals

Name Definition Direction Description

Secondary cache

SCAdAr(17:1) | . qdress bus

Output

Secondary cache

SCAddrow Output
address LSB The 18-bit address bus for the
Secondary cache secondary cache. Bit 0 has four
SCAddrox address LSB Output output lines, (SCAddrow:z), to
Secondary cache provide additional drive current.
SCAddr0Y address LSB Output
SCAddroz Secondary cache Output

address LSB

A 3-bit bus that carries the parity
of the SCAddr bus and the cache
control line SCWr*. The
individual bit definitions are:

Secondary cache
SCAPar(2:0) | address parity Output
bus

Secondary cache
SCAPar2 address parity Output
bus

Even parity for SCAddr(17:12)
and SCWr*

Secondary cache
SCAParl address parity Output
bus

Even parity for SCAddr(11:6) and
SCDCSs*

Secondary cache
SCAPar0 address parity Output
bus

Even parity for SCAddr(5:0) and
SCTCS*

A 128-bit bus used to read or write
Input/Output | cache data from and to the
secondary cache data RAM.

Secondary cache

SCData(127:0) | -=”

MIPS R4000 Microprocessor User's Manual 205

Chapter 8

Table 8-3 (cont.)

Secondary Cache Interface Signals

Name Definition Direction Description
A 16-bit bus that carries two 8-bit
ECC fields that cover the 128 bits
Secondary cache of SCData from/to secondary
SCDChk(15:0) data ECCybus Input/Output | cache. SCDChk(15:8)
corresponds to SCData(127:64)
and SCDChk(7:0) corresponds to
SCData(63:0).
Secondary cache Chip select enable signal for the
*
SCDCS data chip select Output secondary cache data RAM.
Secondary cache Output enable for the secondary
*
SCOE output enable Output cache data and tag RAM.
Secondary cache A 25-bit bus used to read or write
SCTag(24:0) y Input/Output | cache tags from and to the
tag bus
secondary cache.
secondary cache A 7-bit bus that carries an ECC
SCTChk(6:0) Y Input/Output | field covering the SCTag from and
tag ECC bus
to the secondary cache.
Secondary cache Chip select enable signal for the
*
SCTCS tag chip select Output secondary cache tag RAM.
Secondary cache Write enable for the secondary
*
SCWrW write enable Output cache data and tag RAM.
Secondary cache Write enable for the secondary
*
SCWrX write enable Output cache data and tag RAM.
Secondary cache Write enable for the secondary
*
SCWrY write enable Output cache data and tag RAM.
Secondary cache Write enable for the secondary
*
SCWrz write enable Output cache data and tag RAM.

206

MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

8.4 Interrupt Interface Signals

The Interrupt interface signals make up the interface used by external
agents to interrupt the R4000 processor. Int*(5:1) are available only on the
R4000PC; Int*(0) and NMI* are available on all three configurations. Table
8-4 lists the Interrupt interface signals.

Table 8-4 Interrupt Interface Signals
Name Definition Direction Description
Five of six general processor interrupts, bit-
Int*(5:1) | Interrupt Input wise ORed with bits 5:1 of the interrupt
register. R4000PC only.
One of six general processor interrupts, bit-
x
Int*(0) | Interrupt Input wise ORed with bit 0 of the interrupt register.
Nonmaskable Nonmaskable interrupt, ORed with bit 6 of the
NMI* | . Input . .
interrupt interrupt register.

8.5 JTAG Interface Signals

The JTAG interface signals make up the interface that provides the JTAG
boundary scan mechanism. Table 8-5 lists the JTAG interface signals.

Table 8-5 JTAG Interface Signals

Name Definition Direction Description

JTDI | JTAG datain Input Data is serially scanned in through this pin.
The processor outputs a serial clock on

JTCK | TAG clock input Input JTCK. On the rising edge of JTCK, both
JTDI and JTMS are sampled.

JTDO | JTAG data out Output Data is serially scanned out through this pin.

ITMS | ITAG command Input QTAG E:omma}nd S|gngl, indicating the
incoming serial data is command data.

MIPS R4000 Microprocessor User's Manual

207

Chapter 8

8.6 Initialization Interface Signals

The Initialization interface signals make up the interface by which an
external agent initializes the processor operating parameters. These
signals are available on each of the three processor configurations. Table
8-6 lists the Initialization interface signals.

Table 8-6 Initialization Interface Signals

Name Definition Direction Description

This signal must be asserted for a
power on reset or a cold reset. The
clocks SClock, TClock, and RClock
begin to cycle and are synchronized
with the deasserted edge of
ColdReset*. ColdReset* must be
deasserted synchronously with
MasterOut.

ColdReset* | Cold reset Input

Serial boot-mode data clock output;
ModeClock | Boot mode clock Output | runs at the system clock frequency
divided by 256: (MasterClock/256).

Modeln Boot mode data in | Input Serial boot-mode data input.

This signal must be asserted for any
reset sequence. It can be asserted
synchronously or asynchronously for
Reset* Reset Input a cold reset, or synchronously to
initiate a warm' reset. Reset* must be
deasserted synchronously with
MasterOut.

When asserted, this signal indicates to
the processor that the +5 volt power
supply has been above 4.75 volts for
VCCOk Vce is OK Input more than 100 milliseconds and will
remain stable. The assertion of
VCCOK initiates the initialization
sequence.

t. A warm reset restarts processor, but does not affect clocks; it preserves the processor in-
ternal state. A description of warm reset is given in Chapter 9.

208 MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

8.7 Signal Summary

Table 8-7 R4000SC/MC Processor Signal Summary

Description Name 1/0 ASSS,[Z?:d 3-State
Secondary cache data bus SCData(127:0) | 1/0 | High Yes
Secondary cache data ECC bus SCDChk(15:0) | 170 | High Yes
Secondary cache tag bus SCTag(24:0) I/0 | High Yes
Secondary cache tag ECC bus SCTChk(6:0) I/0 | High Yes
Secondary cache address bus SCAddr(17:1) O | High No
Secondary cache address LSB SCAddr0z O | High No
Secondary cache address LSB SCAddroy O | High No
Secondary cache address LSB SCAddroX O | High No
Secondary cache address LSB SCAddrow O | High No
Secondary cache address parity bus SCAPar(2:0) O | High No
Secondary cache output enable SCOE* O | Low No
Secondary cache write enable SCWrz* O | Low No
Secondary cache write enable SCWrY* O | Low No
Secondary cache write enable SCWrX* O | Low No
Secondary cache write enable SCWrw* O | Low No
Secondary cache data chip select SCDCS* O | Low No
Secondary cache tag chip select SCTCS* O | Low No
System address/data bus SysAD(63:0) 170 | High Yes
System address/data check bus SysADC(7:0) I/0 | High Yes
System command/data identifier bus SysCmd(8:0) 170 | High Yes
System command/data identifier bus parity | SysCmdP I/0 | High Yes
Valid input Validln* I Low No
Valid output ValidOut* O | Low No
External request ExtRgst* I Low No
Release interface Release* O | Low No
Read ready RdARdy* I Low No
Write ready WrRdy* I Low No
Invalidate acknowledge IvdAck* I Low No
Invalidate error IvdErr* I Low No

MIPS R4000 Microprocessor User's Manual

209

Chapter 8

Table 8-7 (cont.) R4000SC/MC Processor Signal Summary

Asserted

Description Name 1/0 State 3-State
Interrupt Int*(0) | Low No
Nonmaskable interrupt NMI* | Low No
Boot mode data in Modein I High No
Boot mode clock ModeClock O | High No
JTAG data in JTDI | High No
JTAG data out JTDO O | High No
JTAG command JTMS | High No
JTAG clock input JTCK | High No
Transmit clocks TClock(1:0) O | High No
Receive clocks RClock(1:0) O | High No
Master clock MasterClock | High No
Master clock out MasterOut O | High No
Synchronization clock out SyncOut O | High No
Synchronization clock in Syncin | High No
170 output 100ut O | High No
170 input 10In | High No
Vce is OK VCCOk | High No
Cold reset ColdReset* | Low No
Reset Reset* | Low No
Fault Fault* O | Low No
Quiet Vcce for PLL VccP | High No
Quiet Vss for PLL VssP | High No
Status Status(7:0) O | High No
Vcce sense VceSense 170 | N/A No
Vss sense VssSense I/0 | N/A No
210 MIPS R4000 Microprocessor User's Manual

R4000 Processor Signal Descriptions

Table 8-8 R4000PC Processor Signal Summary

Asserted

Description Name 1/10 State 3-State
System address/data bus SysAD(63:0) | I/0 | High Yes
System address/data check bus SysADC(7:0) | I/0 | High Yes
System command/data identifier bus SysCmd(8:0) | IO | High Yes
System command/data identifier bus parity | SysCmdP 170 | High Yes
Valid input ValidIn* I Low No
Valid output ValidOut* O | Low No
External request ExtRgst* I Low No
Release interface Release* O | Low No
Read ready RdRdy* I Low No
Write ready WrRdy* I Low No
Interrupts Int*(5:1) I Low No
Interrupt Int*(0) I Low No
Nonmaskable interrupt NMI* I Low No
Boot mode data in Modeln I High No
Boot mode clock ModeClock O | High No
JTAG data in JTDI I High No
JTAG data out JTDO O | High No
JTAG command JTMS I High No
JTAG clock input JTCK I High No
Transmit clocks TClock(1:0) O | High No
Receive clocks RClock(1:0) O | High No
Master clock MasterClock I High No
Master clock out MasterOut O | High No
Synchronization clock out SyncOut O | High No
Synchronization clock in Syncin I High No
170 output 100ut O | High No
170 input 10In I High No
Vcce is OK VCCOk I High No
MIPS R4000 Microprocessor User's Manual 211

Chapter 8

Table 8-8 (cont.) R4000PC Processor Signal Summary

Description Name 1/0 ASSStZ;teEd 3-State
Cold reset ColdReset* | Low No
Reset Reset* | Low No
Fault Fault* O Low No
Quiet Vcc for PLL VccP | High No
Quiet Vss for PLL VssP | High No

212

MIPS R4000 Microprocessor User's Manual

Initialization Interface

This chapter describes the R4000 Initialization interface. Thisincludes the
reset signal description and types, initialization sequence, with signals

and timing dependencies, and boot modes, which are set at initialization
time.

Signal names are listed in bold letters—for instance the signal VCCOk
indicates +5 voltage is stable. Lowe-active signals are indicated by a
trailing asterisk, such as ColdReset*, the power-on/cold reset signal.

MIPS R4000 Microprocessor User's Manual 213

Chapter 9

9.1 Functional Overview

The R4000 processor has the following three types of resets; they use the
VCCOK, ColdReset*, and Reset* input signals.

= Power-on reset: starts when the power supply is turned on and
completely reinitializes the internal state machine of the
processor without saving any state information.

= Cold reset: restarts all clocks, but the power supply remains
stable. A cold reset completely reinitializes the internal state
machine of the processor without saving any state information.

= Warm reset: restarts processor, but does not affect clocks. A
warm reset preserves the processor internal state.

The operation of each type of reset is described in sections that follow.
Refer to Figures 9-1, 9-2, and 9-3 later in this chapter for timing diagrams
of the power-on, cold, and warm resets.

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256: (MasterClock/256). This
low-frequency operation allows the initialization information to be stored
in a low-cost EPROM.

214 MIPS R4000 Microprocessor User's Manual

Initialization Interface

9.2 Reset Signal Description

This section describes the three reset signals, VCCOk, ColdReset*, and
Reset*.

VCCOk: When asserted’, VCCOK indicates to the processor that the +5
volt power supply (Vcc) has been above 4.75 volts for more than 100
milliseconds (ms) and is expected to remain stable. The assertion of
VCCOKk initiates the reading of the boot-time mode control serial stream
(described in Initialization Sequence, in this chapter).

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. The clocks SClock, TClock, and RClock
begin to cycle and are synchronized with the deasserted edge (high) of
ColdReset*. ColdReset* must be deasserted synchronously with
MasterClock.

Reset*: the Reset* signal must be asserted for any reset sequence. It can
be asserted synchronously or asynchronously for a cold reset, or
synchronously to initiate a warm reset. Reset* must be deasserted
synchronously with MasterClock.

Modeln: Serial boot mode data in.

ModeClock: Serial boot mode data out, at the MasterClock frequency
divided by 256 (MasterClock/256).

t Asserted means the signal is true, or in its valid state. For example, the low-active Reset*
signal is said to be asserted when it is in a low (true) state; the high-active VCCOK signal
is true when it is asserted high.

MIPS R4000 Microprocessor User's Manual 215

Chapter 9

Power-on Reset

The sequence for a power-on reset is listed below.

1. Power-on reset applies a stable Vcc of at least 4.75 volts from the
+5 volt power supply to the processor. It also supplies a stable,
continuous system clock at the processor operational frequency.

2. After at least 100 ms of stable Vcc and MasterClock, the VCCOk
signal is asserted to the processor. The assertion of VCCOk
initializes the processor operating parameters. After the mode
bits have been read in, the processor allows its internal phase
locked loops to lock, stabilizing the processor internal clock,
PClock, the SyncOut-Syncin clock path (described in Chapter
10), and the master clock output, MasterOut. Note that when
JTAG is not used, JTCK must be tied low at the rising edge of
VCCOKk for the processor to properly reset. IfJTAG is used, JTCK
may be toggled during power-up.

3. ColdReset* is asserted for at least 64K (216) MasterClock cycles
after the assertion of VCCOKk. Once the processor reads the boot-
time mode control serial data stream, ColdReset* can be
deasserted. ColdReset* must be deasserted synchronously with
MasterClock.

4. The deassertion of ColdReset* synchronizes the rising edges of
SClock and TClock with the rising edge of the next MasterClock,
aligning SClock, TClock, and RClock (which is 90 degrees ahead
of phase with SClock and TClock) of all processors in a
multiprocessor system. However, these clocks are only
guaranteed to be stabilized 64 MasterClock cycles after
ColdReset* is deasserted.

5. After ColdReset* is deasserted synchronously and SClock,
TClock, and RClock have stabilized, Reset* is deasserted to allow
the processor to begin running. (Reset* must be held asserted for
at least 64 MasterClock cycles after the deassertion of
ColdReset*.) Reset* must be deasserted synchronously with
MasterClock.

NOTE: ColdReset* must be asserted when VCCOK asserts. The
behavior of the processor is undefined if VCCOKk asserts while
ColdReset* is deasserted.

216 MIPS R4000 Microprocessor User's Manual

Initialization Interface

Cold Reset

A cold reset can begin anytime after the processor has read the
initialization data stream, causing the processor to start with the Reset
exception. For information about saving processor states, see the
description of the Reset exception in Chapter 5.

A cold reset requires the same sequence as a power-on reset except that the
power is presumed to be stable before the assertion of the reset inputs and
the deassertion of VCCOKk.

To begin the reset sequence, VCCOk must be deasserted for a minimum
of at least 64 MasterClock cycles before reassertion.

Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously with
MasterClock. It is then held asserted for at least 64 MasterClock cycles
before being deasserted synchronously with MasterClock. The processor
internal clocks, PClock and SClock, and the System interface clocks,
TClock and RClock, are not affected by a warm reset. The boot-time
mode control serial data stream is not read by the processor on a warm
reset. A warm reset forces the processor to start with a Soft Reset
exception. For information about saving processor states, see the
description of the Soft Reset exception in Chapter 5.

The master clock output, MasterOut, can be used to generate any reset-
related signals for the processor that must be synchronous with
MasterClock.

After a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a cache
miss sequence has been interrupted by resetting the processor state
machines.

T Since MasterOut is undefined until after the serial PROM is read, reset logic must not
depend on MasterOut before the boot PROM is read.

MIPS R4000 Microprocessor User's Manual 217

Chapter 9

9.3 Initialization Sequence

The boot-mode initialization sequence begins immediately after VCCOk
is asserted. Asthe processor reads the serial stream of 256 bits through the
Modeln pin, the boot-mode bits initialize all fundamental processor
modes (the signals used are described in Chapter 8).

The initialization sequence is listed below.

1. The system deasserts the VCCOk signal. The ModeClock output
is held asserted.

2. The processor synchronizes the ModeClock output at the time
VCCOK is asserted. The first rising edge of ModeClock occurs
256 MasterClock cycles after VCCOK is asserted.

3. Eachbitof the initialization stream is presented at the Modeln pin
after each rising edge of the ModeClock. The processor samples
256 initialization bits from the Modeln input.

Figures 9-1, 9-2, and 9-3 on the next three pages show the timing diagrams
for the power-on, warm, and cold resets.

218 MIPS R4000 Microprocessor User's Manual

[enue s,48sM 40ss3004doldIA 000V SAIIN

6TC

1959 UO0-1aM0d T-6 a4nbi4

5.25V

Power-on Reset (POR)

4.75VT /

Vce

Wavy lines indicate one or more identical
cycles, not shown due to space constraints

Y

masterclock_ 1/ \ & S—— 1/ s\ s— \—s—/_J\
(MClk) > TDS
- > 100ms 256
VCCOK 256 MCIk cycles _ | MClk
clycl-els
ModeClock __ \7 /_\q)/ N—gg —/_\ %
TMDS -
_ - TMDH]
Modeln Bt 0)L Bit 1>€SS)< o
-4 TDS - -4 TDS
_ ~ > 64K MClk cycles* > >~
cycles
ColdReset* __ - Y B > 64 MCIk cycles
-4 TDS *Considering multiple processing variables and systems- T —| |- TDS
- related variables that cannot be duplicated on the tester, a larger Q= -
Reset* number greater than or equal to 100 ms is recommended a 2
— So
g <
=}
— N3
Undefined 287 \ % /__//__
MasterOut __ =4
- Undefined @5 /_\ < _/__//__
SyncOut __ ® ;
gz" i T8 ook and RClock are siand
—_ Undefined 2 g /—Yiter 64 MCIk cycles
TClock _ 2o 4/_\
S}
- Undefined

RClock

.

-/

[enue s,48sM 40ss3004doldIA 000V SAIIN

18894 p|oD Z-6 84nbi

0¢¢e

Cold Reset

Vece Wavy lines indicate one or more identical
- cycles, not shown due to space constraints

(MCIk) - - TDS
TDS | le——F—— P
- > 64| MCIk 256
VCCOK _ cycles ‘4 256 MClk cycles _ | MClk
clyclgs
ModeClock __ J \7 /_\SS/ N—SS—/_\ %
TMDS -
_ - TMDH _
Modeln BitO)F Bit 1>{-SS3<§£5
TDS > DS
o - - > 64K MCIK cycles* —ﬁ/
cycles
ColdReset* __ - y 13 B > 64 MCIk cycles -
TDS—| |- *Considering multiple processing variables and systems- - —»| = TDS
- related variables that cannot be duplicated on the tester, alarger ¢ 2
Reset* number greater than or equal to 100 ms is recommended § L
;2
— Undefined 23
1\ —s—/ L\ —
MasterOut __ =Q
K
' Sp
— Undefined 7} g /—\ <
[¢°] —_ _ —
SyncOut __ & S /_\J /_\
93 Taock and RClock are stame
— Undefined Sz /_ffjer 64 MCIk cycles /—\
wn > —
TClock __ T e _/
0
. o «Q
— Undefined Q 8—\
oo
@

RClock / _

[enue s,48sM 40ss3004doldIA 000V SAIIN

Tee

19594 WepN £-6 a4nbi4

Vce

MasterClock__

(MCIK)

VCCOK

ModeClock

Modeln

ColdReset* __

Reset*

MasterOut

SyncOut

TClock

RClock

Warm Reset

Wavy lines indicate one or more identical

cycles, not shown due to space constraints

VAN

S\ N\

AN

256 MCIk cycles

_ /N
_/\
/\
/\

TDS—»

A

- TDS

Undefined

> 64 MClk cycles

Lyvr

Undefined

Undefined

Undefined

S\

VAW

NS\
A\ s

34

Chapter 9

9.4 Boot-Mode Settings

Table 9-1 lists the processor boot-mode settings. The following rules apply
to the boot-mode settings listed in this table:

Bit 0 of the stream is presented to the processor when VCCOk
is first asserted.

Selecting a reserved value results in undefined processor
behavior.

Bits 65 to 255 are reserved bits.
Zeros must be scanned in for all reserved bits.

Table 9-1 Boot-Mode Settings

Serial Bit | Value | Mode Setting
BlkOrder: Secondary Cache Mode block read response ordering
0 0 Sequential ordering
1 Subblock ordering
EIBParMode: Specifies nature of System interface check bus
1 0 Single_error correcting,double error detecting (SECDED) error
checking and correcting mode
1 Byte parity
EndBIt: Specifies byte ordering
2 0 Little-endian ordering
1 Big-endian ordering
DShMdDis: Dirty shared mode; enables the transition to dirty shared state
on a successful processor update
3 0 Dirty shared mode enabled
1 Dirty shared mode disabled
NoSCMode: Specifies presence of secondary cache
4 0 Secondary cache present
1 No secondary cache present
SysPort: System Interface port width, bit 6 most significant
5:6 0 64 bits
1-3 Reserved
SC64BitMd: Secondary cache interface port width
7 0 128 bits
1 Reserved
EISpltMd: Specifies secondary cache organization
8 0 Secondary cache unified
1 Secondary cache split
222 MIPS R4000 Microprocessor User's Manual

Initialization Interface

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit | Value | Mode Setting
SCBIkSz: Secondary cache line length, bit 10 most significant
0 4 words
9:10 1 8 words
2 16 words
3 32 words
XmitDatPat: System interface data rate, bit 14 most significant
0 D
1 DDx
2 DDxx
3 DxDx
11:14 4 DDxxx
5 DDxxxx
6 DxxDxx
7 D DXXXXXX
8 DxxxDxxx
9-15 Reserved
SysCkRatio: PClock to SClock divisor, frequency relationship between
SClock, RClock, and TClock and PClock, bit 17 most significant
0 Divide by 2
1 Divide by 3
15:17 2 Divide by 4
3 Divide by 6 (R4400 processor only)
4 Divide by 8 (R4400 processor only)
5-7 Reserved
18 SIMasterMd: Master/Checker Mode (see mode bit 42); used in R4400 only.
TimIntDis: Timer Interrupt enable allows timer interrupts, otherwise the
interrupt used by the timer becomes a general purpose interrupt
19 0 Timer Interrupt enabled
1 Timer Interrupt disabled
PotUpdDis: Potential update enable allows potential updates to be issued.
Otherwise, only compulsory updates are issued
20 0 Potential updates enabled
1 Potential updates disabled
TWrSUp: Secondary cache write deassertion delay, Tyyrsyp in PCycles, bit
_ 24 most significant
21:24 0-2 Undefined
3-15 Number of PClock cycles: Min 3, Max 15

MIPS R4000 Microprocessor User's Manual 223

Chapter 9

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit Value | Mode Setting
TWr2Dly: Secondary cache write assertion delay 2, Tyyopyy in PCycles, bit
25:26 26 most significant
0 Undefined
1-3 Number of PClock cycles: Min 1, Max 3
TWrlDly: Secondary cache write assertion delay 1, Tyyr1py in PCycles, bit
. 28 most significant
21:28 0 Undefined
1-3 Number of PClock cycles; Min 1, Max 3
TWrRc: Secondary cache write recovery time, Tyyrc in PCycles, either 0 or
1 cycle
29 0 0 cycle
1 1 cycle
TDis: Secondary cache disable time, Tp;s in PCycles, bit 32 most significant
30:32 0-1 Undefined
2-7 Number of PClock cycles: Min 2, Max 7
TRd2Cyc: Secondary cache read cycle time 2, Trqcyco in PCycles, bit 36 most
. significant
33:36 0-1 Undefined
2-15 Number of PClock cycles: Min 2, Max 15
TRd1Cyc: Secondary cache read cycle time 1, Trqcycy in PCycles, bit 40 most
. significant
37:40 0-3 Undefined
4-15 Number of PClock cycles: Min 4, Max 15
NoMPmode: Secondary cache line is not invalidated
NoMPmode off: after a secondary cache miss, the
0 existing valid cache line is invalidated (following
A1 writeback if necessary)
NoMPmode on: after a secondary cache miss, the
1 exist_ing valid cache line is not invalidated.
Available on the R4000SC and R4400SC, to
improve performance.
224 MIPS R4000 Microprocessor User's Manual

Initialization Interface

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit | Value Mode Setting
SCMasterMd: selects the type of Master/Checker mode (also see
description of mode bit 18). Used in R4400 only.

SCsz\steer SIquteer Mode
(Bit42) (Bit 18)

Complete Master

0 0 - . . .
(required for single-chip operation)

42 1 1 Cor_nplete_Listener

(paired with Complete Master)

1 0 System Interface Master
(SIMaster)

0 1 Secondary Cac_:he Ma_ster
(SCMaster, paired with SIMaster)

43:45 0 Reserved
Pkg179: R4000 Processor Package type

46 0 Large (447 pin)

1 Small (179 pin)
CycDivisor: This mode determines the clock divisor for the reduced
power mode. When the RP bit in the Status register is set to 1, the pipeline
clock is divided by one of the following values. Bit 49 is the most

) significant.

47:49 0 Divide by 2
1 Divide by 4
2 Divide by 8
3 Divide by 16
4-7 Reserved
Drv0_50, Drv0_75, Drvl_00: Drive the outputs out in n x MasterClock
period. Bit 52 is the most significant. Combinations not defined below are

50:52 reserved. _ .

1 Drive at 0.50 x MasterClock period

2 Drive at 0.75 x MasterClock period

4 Drive at 1.00 x MasterClock period

InitP: Initial values for the state bits that determine the pull-down Ai/At
and switching speed of the output buffers. Bit 53 is the most significant.

53:56 0 Fastest pull-down rate
1-14 Intermediate pull-down rates
15 Slowest pull-down rate

MIPS R4000 Microprocessor User's Manual

225

Chapter 9

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit | Value | Mode Setting
InitN: Initial values for the state bits that determine the pull-up Ai/At and
switching speed of the output buffers. Bit 57 is the most significant.
57.60 0 Slowest pull-up rate
1-14 Intermediate pull-up rates
15 Fastest pull-up rate
EnbIDPLLR: Enables the negative feedback loop that determines the
Ai/At and switching speed of the output buffers during ColdReset.
61 0 Disable Ai/At mechanism
1 Enable Ai/At mechanism
EnbIDPLL: Enables the negative feedback loop that determines the Ai/At
and switching speed of the output buffers during ColdReset and during
62 normal operation.
0 Disable Ai/At control mechanism
1 Enable Ai/At control mechanism
DsbIPLL: Disables the phase-locked loops (PLLs) that match MasterClock
and produce RClock, TClock, SClock, and the internal clocks.
63 0 Enable PLLs
1 Disable PLLs
SRTristate: Controls when output-only pins are tristated
64 0 Only when ColdReset* is asserted
1 When Reset* or ColdReset* are asserted
65:255 Reserved. Scan in zeros.
226 MIPS R4000 Microprocessor User's Manual

Clock Interface

10

This chapter describes the clock signals (“clocks™) used in the R4000
processor and the processor status reporting mechanism.

The subject matter includes basic system clocks, system timing
parameters, connecting clocks to a phase-locked system, connecting clocks
to a system without phase locking, and processor status outputs.

MIPS R4000 Microprocessor User's Manual 227

Chapter 10

10.1 Signal Terminology
The following terminology is used in this chapter (and book) when
describing signals:
= Rising edge indicates a low-to-high transition.
= Falling edge indicates a high-to-low transition.

= Clock-to-Q delay is the amount of time it takes for a signal to
move from the input of a device (clock) to the output of the
device (Q).

Figures 10-1 and 10-2 illustrate these terms.

single clock cycle

e
high-to-low \
transition low-to-high
transition
Figure 10-1 Signal Transitions
data out
data in
clock input
Clock-to-Q
delay
-

Figure 10-2 Clock-to-Q Delay

228 MIPS R4000 Microprocessor User's Manual

Clock Interface

10.2 Basic System Clocks

The various clock signals used in the R4000 processor are described below,
starting with MasterClock, upon which the processor bases all internal
and external clocking.

MasterClock

The processor bases all internal and external clocking on the single
MasterClock input signal. The processor generates the clock output
signal, MasterOut, at the same frequency as MasterClock and aligns
MasterOut with MasterClock, if Syncln is connected to SyncOut.

MasterOut

The processor generates the clock output signal, MasterOut, at the same
frequency as MasterClock and aligns MasterOut with MasterClock, if
Syncln is connected to SyncOut. MasterOut clocks external logic, such as
the reset logic.

Syncln/SyncOut

The processor generates SyncOut at the same frequency as MasterClock
and aligns Syncln with MasterClock.

SyncOut must be connected to Syncln either directly, or through an
external buffer. The processor can compensate for both output driver and
input buffer delays (and, when necessary, delay caused by an external
buffer) when aligning Syncln with MasterClock. Figure 10-7 gives an
illustration of SyncOut connected to Syncln through an external buffer.

PClock

The processor generates an internal clock, PClock, at twice the frequency
of MasterClock and precisely aligns every other rising edge of PClock
with the rising edge of MasterClock.

All internal registers and latches use PClock.

MIPS R4000 Microprocessor User's Manual 229

Chapter 10

SClock

The R4000 processor divides PClock by 2, 3, or 4 (as programmed at boot-
mode initialization) to generate the internal clock signal, SClock. The
R4400 processor divides PClock by 2, 3, 4, 6 or 8 (as programmed at boot-
mode initialization) to generate SClock. The processor uses SClock to
sample data at the system interface and to clock data into the processor
system interface output registers.

The first rising edge of SClock, after ColdReset* is deasserted, is aligned
with the first rising edge of MasterClock.

TClock

TClock (transmit clock) clocks the output registers of an external agent,T
and can be a global system clock for any other logic in the external agent.

TClock is the same frequency as SClock. When Syncln is shorted to
SyncOut, the edges of TClock align precisely with the edges of SClock
and MasterClock.

When a delay is added between Syncln and SyncOut, the TClock at the
pins leads SClock (and thus MasterClock) by the same amount of delay.

If the delay between Syncln and SyncOut is matched to an external delay
between TClock at the processor and TClock at the external logic, the
TClock at the external logic aligns to SClock and MasterClock.

RClock

The external agent uses RClock (receive clock) to clock its input registers.
The processor generates RClock at the same frequency as TClock, but
RClock always leads TClock and SClock by 25 percent of SClock cycle
time. The relationship between RClock and TClock is independent of the
delay between Syncln and SyncOut.

PClock-to-SClock Division

Figure 10-3 shows the clocks for a PClock-to-SClock division by 2; Figure
10-4 shows the clocks for a PClock-to-SClock division by 4.

t External agent is defined in Chapter 12.

230 MIPS R4000 Microprocessor User's Manual

Clock Interface

Cycle

MasterClock

MasterOut
PClock
SClock
TClock
RClock

SysAD Driven

SysAD Received

Figure 10-3

XX

O\
I ==
L

1 | 2

—

tckrigh |

VA
VAR

~

o XX
] Lo
I(to_o)|

X

Yo}
e

e

Processor Clocks, PClock-to-SClock Division by 2

MIPS R4000 Microprocessor User's Manual

231

Chapter 10

cycle

MasterClock

SyncOut

-

1 | 2

SClock

TClock

RClock

I

-l

|
|
|
PClock |
|
|
|
|

-

SysAD Driven

[[

[[

RN Y A Y A
])
])

X
] o
M

SysAD Received | :X

Ao X

s
e

Figure 10-4 Processor Clocks, PClock-to-SClock Division by 4

232

MIPS R4000 Microprocessor User's Manual

Clock Interface

10.3 System Timing Parameters

As shown in Figures 10-3 and 10-4, data provided to the processor must be
stable a minimum of tpg nanoseconds (ns) before the rising edge of SClock
and be held valid for a minimum of tp ns after the rising edge of SClock.

Alignment to SClock

Processor data becomes stable a minimum of tpy, ns and a maximum of
tpo Nns after the rising edge of SClock. This drive-time is the sum of the
maximum delay through the processor output drivers together with the
maximum clock-to-Q delay of the processor output registers.

Alignment to MasterClock

Certain processor inputs (specifically VCCOk, ColdReset*, and Reset*)
are sampled based on MasterClock, while others (specifically, Status(7:0))
are output based on MasterClock. The same setup, hold, and drive-off
parameters, tps, tpn, tpm, @nd tpg, shown in Figures 10-3 and 10-4, apply
to these inputs and outputs, but they are measured by MasterClock
instead of SClock.

Phase-Locked Loop (PLL)

The processor aligns SyncOut, PClock, SClock, TClock, and RClock with
internal phase-locked loop (PLL) circuits that generate aligned clocks
based on SyncOut/Syncln. By their nature, PLL circuits are only capable
of generating aligned clocks for MasterClock frequencies within a limited
range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or
jitter; a clock aligned with MasterClock by the PLL can lead or trail
MasterClock by as much as the related maximum jitter allowed by the
individual vendor.

MIPS R4000 Microprocessor User's Manual 233

Chapter 10

10.4 Connecting Clocks to a Phase-Locked System

When the processor is used in a phase-locked system, the external agent
must phase lock its operation to acommon MasterClock. In such a system,
the delivery of data and data sampling have common characteristics, even
if the components have different delay values. For example, transmission
time (the amount of time a signal takes to move from one component to
another along a trace on the board) between any two components A and B
of a phase-locked system can be calculated from the following equation;

Transmission Time = (SClock period) - (tpgfor A) — (tpgfor B) -
(Clock litter for A Max) — (Clock Jitter for B Max)

Figure 10-5 shows a block-level diagram of a phase-locked system using
the R4000 processor.

MasterClock

R4000 External Agent
MasterClock MasterClock
SysCmd SysCmd
SysAD SysAD
SyncOut
Syncin
RClock
TClock

Figure 10-5 R4000 Processor Phase-Locked System

234 MIPS R4000 Microprocessor User's Manual

Clock Interface

10.5 Connecting Clocks to a System without Phase Locking

When the R4000 processor is used in a system in which the external agent
cannot lock its phase to acommon MasterClock, the output clocks RClock
and TClock can clock the remainder of the system. Two clocking
methodologies are described in this section: connecting to a gate-array
device or connecting to discrete CMOS logic devices.

Connecting to a Gate-Array Device

When connecting to a gate-array device, both RClock and TClock are
used within the gate-array. The gate array internally buffers RClock and
uses this buffered version to clock registers that sample processor outputs.

These sampling registers should be immediately followed by staging
registers clocked by an internally buffered version of TClock. This
buffered version of TClock should be the global system clock for the logic
inside the gate array and the clock for all registers that drive processor
inputs. Figure 10-6 is a block diagram of this circuit.

Staging registers place a constraint on the sum of the clock-to-Q delay of
the sample registers and the setup time of the staging registers inside the
gate arrays, as shown in the following equation:

Clock-to-Q Delay + Setup of Staging Register
— (Maximum Clock Jitter for RClock)
— (Maximum Delay Mismatch for Internal Clock 0.25 (RClock period)
Buffers on RClock and TClock)

Figure 10-6 is a block diagram of a system without phase lock, using the
R4000 processor with an external agent implemented as a gate array.

MIPS R4000 Microprocessor User's Manual 235

Chapter 10

Sampling Staging
Gate Register Register
MasterClock Array
R4000
MasterClock]
SysCmd
SysAD
<«
~
SyncOut
Syncin
RClock '|>
P>
TClock | >
L CE
Sampling Staging
Register Register
CE
/I
—~

Figure 10-6 Gate-Array System without Phase Lock, using the R4000 Processor

236 MIPS R4000 Microprocessor User's Manual

Clock Interface

In a system without phase lock, the transmission time for a signal from the
processor to an external agent composed of gate arrays can be calculated
from the following equation:
Transmission Time = (75 percent of TClock period) - (tpofor R4000)

+ (Minimum External Clock Buffer Delay)

— (External Sample Register Setup Time)

— (Maximum Clock Jitter for R4000 Internal Clocks)

— (Maximum Clock Jitter for RClock)

The transmission time for a signal from an external agent composed of gate
arrays to the processor in a system without phase lock can be calculated
from the following equation:

Transmission Time = (TClock period) — (tpgfor R4000)
— (Maximum External Clock Buffer Delay)
— (Maximum External Output Register Clock-to-Q Delay)
— (Maximum Clock Jitter for TClock)
— (Maximum Clock Jitter for R4000 Internal Clocks)

MIPS R4000 Microprocessor User's Manual 237

Chapter 10

Connecting to a CMOS Logic System

The processor uses matched delay clock buffers to generate aligned clocks
to external CMOS logic. A matched delay clock buffer is inserted in the
SyncOut/Syncln alignment path of the processor, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the buffer delay
amount, while leaving PClock aligned with MasterClock.

The remaining matched delay clock buffers are available to generate a
buffered version of TClock aligned with MasterClock. Alignment error
of this buffered TClock is the sum of the maximum delay mismatch of the
matched delay clock buffers, and the maximum clock jitter of TClock.

As the global system clock for the discrete logic that forms the external
agent, the buffered version of TClock clocks registers that sample
processor outputs, as well as clocking the registers that drive the processor
inputs.

The transmission time for a signal from the processor to an external agent
composed of discrete CMOS logic devices can be calculated from the
following equation:

Transmission Time = (TClock period) — (tpgfor R4000)
— (External Sample Register Setup Time)
— (Maximum External Clock Buffer Delay Mismatch)
— (Maximum Clock Jitter for R4000 Internal Clocks)
— (Maximum Clock Jitter for TClock)

Figure 10-7 is a block diagram of a system without phase lock, employing
the R4000 processor and an external agent composed of both a gate array
and discrete CMOS logic devices.

238 MIPS R4000 Microprocessor User's Manual

Clock Interface

MasterClock
R4000
MasterClock |

SysCmd

SysAD Control

| Gate
Array

SyncOut N

Syncin

LN\
I

Sample
Registers \-A =

Memory

Figure 10-7 Gate Array and CMOS System without Phase Lock, using the R4000 Processor

MIPS R4000 Microprocessor User's Manual 239

Chapter 10

The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following
equation:
Transmission Time = (TClock period) — (tpgfor R4000)

— (Maximum External Output Register Clock-to-Q Delay)

— (Maximum External Clock Buffer Delay Mismatch)

— (Maximum Clock Jitter for R4000 Internal Clocks)

— (Maximum Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the
processor to an external sampling register is a critical parameter. To
guarantee hold time, the minimum output delay of the processor, tpp,
must be greater than the sum of:

minimum hold time for the external sampling register

+ maximum clock jitter for R4000 internal clocks

+ maximum clock jitter for TClock

+ maximum delay mismatch of the external clock buffers

240 MIPS R4000 Microprocessor User's Manual

Clock Interface

10.6 Processor Status Outputs

The R4400 processor provides eight status outputs, Status(7:0), aligned
with each rising edge of MasterClock. Attime T (the first PCycle of
MasterClock when status is examined) these status outputs indicate
whether the machine was running or stalled during the previous T-2 and
T-3 PCycles, as follows:

= |If the machine was stalled during the T-2 or T-3 PCycles, the
status outputs indicate the type of stall which occurred (listed
in Table 10-1).

= |If the machine was running during the T-2 or T-3 PCycles, the
status outputs describe the type of instruction which occupied
the WriteBack pipeline stage during the T-2 or T-3 PCycles, and
which was successfully completed (listed in Table 10-1).

= The status outputs also indicate if an instruction in the T-2 or
T-3 PCycle was killed, and if so, states the cause (listed in
Table 10-1.

The Status(7:0) bits are treated as two fields, as follows:

= The Status(7:4) field indicates the internal status of the
processor during PCycle T-3.

= The Status(3:0) bits indicate the internal status of the processor
during the PCycle T-2.

MIPS R4000 Microprocessor User's Manual 241

Chapter 10

Table 10-1 shows the encoding of processor’s status for pins Status(7:4) or
Status(3:0).

Table 10-1 Encoding of R4400 Processor Internal State by Status(7:4) or Status(3:0)
Stsatgiz(g(g)o;)r Cycle Processor Internal Status
0 Run cycle Other integer instruction (not Ioad/store/ponditional
branch. Includes ERET and Jump instructions.)
1 Run cycle Load
2 Run cycle Untaken conditional branch
3 Run cycle Taken conditional branch
4 Run cycle Store
5 Reserved
6 Stall cycle MP stall
7 Run cycle Integer instruction Killed by slip
8 Stall cycle Other stall type
9 Stall cycle Primary instruction cache stall
a Stall cycle Primary data cache stall
b Stall cycle Secondary cache stall
c Run cycle Othe_r floating-point instruction (not load, store, or
conditional branch)
d Run cycle Instruction killed by branch, jump, or ERET
e Run cycle Instruction killed by exception
f Run cycle Floating-point instruction killed by slip
242 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

11

This chapter describes in detail the cache memory: its place in the R4000
memory organization, individual operations of the primary and
secondary caches, cache interactions, and an example of a cache coherency
request cycle. The chapter concludes with a description of R4000
processor synchronization in a multiprocessor environment.
This chapter uses the following terminology:

= The primary cache may also be referred to as the P-cache.

= The secondary cache may also be referred to as the S-cache.

= The primary data cache may also be referred to as the D-cache.

= The primary instruction cache may also be referred to as the
I-cache.

These terms are used interchangeably throughout this book.

MIPS R4000 Microprocessor User's Manual 243

Chapter 11

11.1 Memory Organization

Figure 11-1 shows the R4000 system memory hierarchy. In the logical
memory hierarchy, caches lie between the CPU and main memory. They
are designed to make the speedup of memory accesses transparent to the
user. Each functional block in Figure 11-1 has the capacity to hold more
data than the block above it. For instance, physical main memory has a
larger capacity than the secondary cache. At the same time, each
functional block takes longer to access than any block above it. For
instance, it takes longer to access data in main memory than in the CPU
on-chip registers.

R4000 CPU
A
o
Registers Registers 2
k=)
]
@
\
I-cache D-cache
g (%]
Primary Cache 2
’g
O
\j
S-cgche Faster_ Access Increasing_ Data
) Time Capacity
A
>
Main Memory g
3]
=

Disk, CD-ROM,

Tape, etc.

Peripherals

Figure 11-1 Logical Hierarchy of Memory

244 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

The R4000 processor has two on-chip primary caches: one holds
instructions (the instruction cache), the other holds data (the data cache).
Off-chip, the R4000 processor supports a secondary cache on the R4000SC
and MC models.

11.2 Overview of Cache Operations

As described earlier, caches provide fast temporary data storage, and they
make the speedup of memory accesses transparent to the user. In general,
the processor accesses cache-resident instructions or data through the
following procedure:

1. The processor, through the on-chip cache controller, attempts to access
the next instruction or data in the primary cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

= |f the instruction/data is present, the processor retrieves it.
This is called a primary-cache hit.

= |f the instruction/data is not present in the primary cache, the
cache controller must retrieve it from the secondary cache or
memory. This is called a primary-cache miss.

3. Ifaprimary-cache miss occurs, the cache controller checks to see if the
instruction/data is in the secondary cache.

e |f the instruction/data is present in the secondary cache, it is
retrieved and written into the primary cache.

< |f the instruction/data is not present in the secondary cache, it
is retrieved as a cache line (a block whose size set in the Config
register; see the section titled Variable-Length Cache Lines in
this chapter for available cache line lengths) from memory and
is written into both the secondary cache and the appropriate
primary cache.

4. The processor retrieves the instruction/data from the primary cache
and operation continues.

It is possible for the same data to be in three places simultaneously: main
memory, secondary cache, and primary cache. This data is kept consistent
through the use of write back methodology; that is, modified data is not
written back to memory until the cache line is replaced.

MIPS R4000 Microprocessor User's Manual 245

Chapter 11

11.3 R4000 Cache Description

As Figure 11-1 shows, the R4000 contains separate primary instruction and
data caches. Figure 11-1 also shows that the R4000 supports a secondary
cache that can be split into separate portions, one portion containing data
and the other portion containing instructions, or it can be a joint cache,
holding combined instructions and data.

This section describes the organization of on-chip primary caches and the
optional off-chip secondary cache. Table 11-1 lists the cache and cache
coherency support for the three R4000 models.

Table 11-1 R4000 Cache and Coherency Support

R4000 Support Support Support
Model Primary Secondary Cache
Cache? Cache? Coherency?
R4000PC Yes No No
R4000SC Yes Yes No
R4000MC Yes Yes Yes

Figure 11-2 provides block diagrams of the three R4000 models:
< R4000PC, which supports only the primary cache

= R4000SC and R4000MC, which support both primary and
secondary caches

246 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Primary Cache Only

R4000PC

Cache Controller - Main Memory

l-cache
Primary

Caches

D-cache

Primary and Secondary Cache

R4000SC/MC

Cache Controller - Main Memory

I-cache
Primary
Caches

Secondary'Cache I-cache primary instruction cache
D-cache primary data cache

Figure 11-2 Cache Support in the R4000PC, R4000SC, and R4000MC

D-cache

MIPS R4000 Microprocessor User's Manual 247

Chapter 11

Secondary Cache Size

Table 11-2 lists the range of secondary cache sizes. The secondary cache is
user-configurable at boot time through the boot-mode bits (see Chapter 9);
it can be a joint cache, containing both data and instructions in a single
cache, or split into separate data and instruction caches.

Table 11-2 Secondary Cache Sizes

Cache Minimum Size Maximum Size
Secondary Joint Cache 128 Kbytes 4 Mbytes
Secondary Split I-Cache 128 Kbytes 2 Mbytes
Secondary Split D-Cache 128 Kbytes 2 Mbytes

Variable-Length Cache Lines

A cache line is the smallest unit of information that can be fetched from the
cache, and that is represented by a single tag." A primary cache line can
be either 4 or 8 words in length; a secondary cache line can be either 4, 8,
16, or 32 words in length. Primary cache line length is set in the Config
register; see Chapter 4 for more information. Secondary cache line length
is set at boot time through the boot-mode bits, as described in Chapter 9.

Upon a cache miss in both primary and secondary caches, the missing
secondary cache line is loaded first from memory into the secondary
cache, whereupon the appropriate subset of the secondary cache line is
loaded into the primary cache.

The primary cache line length can never be longer than that of the
secondary cache; it must always be less than or equal to the secondary
cache line length. This means the secondary cache cannot have a 4-word
line length while the primary cache has an 8-word line length.

Cache Organization and Accessibility

This section describes the organization of the primary and secondary
caches, including the manner in which they are mapped, the addressing
(either virtual or physical) used to index the cache, and composition of the
cache lines. The primary instruction and data caches are indexed with a
virtual address (VA), while the secondary cache is indexed with a physical
address (PA).

t Primary and secondary cache tags are described in the following sections.

248 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Organization of the Primary Instruction Cache (I-Cache)

Each line of primary I-cache data (although it is actually an instruction, it
is referred to as data to distinguish it from its tag) has an associated 26-bit
tag that contains a 24-bit physical address, a single valid bit, and a single
parity bit. Byte parity is used on I-cache data.
The R4000 processor primary I-cache has the following characteristics:

« direct-mapped

= indexed with a virtual address

= checked with a physical tag

= organized with either a 4-word (16-byte) or 8-word (32-byte)

cache line.

Figure 11-3 shows the format of an 8-word (32-byte) primary I-cache line.

25 24 23 0
Pl V PTag
1 1 24
71 64 63 0

PTag Physical tag (bits 35:12 of the physical address)
\ Valid bit

Data Cache data

P Even parity for the PTag and V fields

DataP Even parity; 1 parity bit per byte of data

8 64

Figure 11-3 R4000 8-Word Primary I-Cache Line Format

MIPS R4000 Microprocessor User's Manual 249

Chapter 11

Organization of the Primary Data Cache (D-Cache)

Each line of primary D-cache data has an associated 29-bit tag that
contains a 24-bit physical address, 2-bit cache line state, a write-back bit, a
parity bit for the physical address and cache state fields, and a parity bit
for the write-back bit. Byte parity is used on D-cache data.
The R4000 processor primary D-cache has the following characteristics:

= write-back

« direct-mapped

= indexed with a virtual address

= checked with a physical tag

= organized with either a 4-word (16-byte) or 8-word (32-byte)

cache line.

Figure 11-4 shows the format of a 8-word (32-byte) primary D-cache line.

28 27 26 25 24 23 0
W|W| P CS PTag
1 1 1 2 24
71 64 63 0

£=

0O 7T
(@]

PTag
DataP
Data

Even parity for the write-back bit

Write-back bit (set if cache line has been written)

Even parity for the PTag and CS fields

Primary cache state:
0 = Invalid in all R4000 configurations
1 = Shared (either Clean or Dirty) in R4000MC configuration only
2 = Clean Exclusive in R4000SC and MC configurations only
3 = Dirty Exclusive in all R4000 configurations

Physical tag (bits 35:12 of the physical address)

Even parity for the data

Cache data

Figure 11-4 R4000 8-Word Primary Data Cache Line Format

250

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

In all R4000 processors, the W (write-back) bit, not the cache state,
indicates whether or not the primary cache contains modified data that
must be written back to memory or to the secondary cache.

Accessing the Primary Caches

Figure 11-5 shows the virtual address (VA) index into the primary caches.
Each instruction and data cache range in size from 8 Kbytes to 32 Kbytes;
therefore, the number of virtual address bits used to index the cache
depends on the cache size. For example, VA(12:4) accesses a 8-Kbyte page
tag in a cache with a 4-word line (VA(12) addresses 8 Kbytes and VA(4)
provides quadword resolution); similarly, VA(14:5) accesses an 8-word
tag: VA(5) provides octalword access in a 32-Kbyte cache (VA(14)
addresses 32 Khytes).

—

Tags
Data
Tag line
VA(12:n*) for 8 Kbyte
to VA(12:n*)
VA(14:n*) for 32 Kbyte to)
VA(14:n%) Data line

o

W W’ State Tag P

*n = 4 for 4-word lines
n =5 for 8-word lines

64

Data

Figure 11-5 Primary Cache Data and Tag Organization

MIPS R4000 Microprocessor User's Manual 251

Chapter 11

Organization of the Secondary Cache

Each secondary cache line has an associated 19-bit tag that contains bits
35:17 of the physical address, a 3-bit primary cache index, VA(14:12), and
a 3-bit cache line state. These 25 bits are protected by a 7-bit ECC code.

The secondary cache is accessible to the processor and to the system
interface; by setting the appropriate boot-mode bits, it can be configured
at chip reset as a joint cache, or as separate I- and D-caches.

Figure 11-6 shows the format of the R4000 processor secondary-cache line.
The size of the secondary cache line is set in the SB field of the Config

register.
31 25 24 2221 19 18 0
ECC CS | Pldx STag
7 3 3 19

ECC ECC for secondary tag
CS Secondary-cache state
0 = Invalid
1 =reserved
2 =reserved
3 =reserved
4 = Clean Exclusive
5 = Dirty Exclusive
6 = Shared
7 = Dirty Shared
Pldx Primary cache index (bits 14:12 of the virtual address)
STag Physical tag (bits 35:17 of the physical address)

Figure 11-6 R4000 Secondary Cache Line Format

252 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

The R4000 processor secondary cache has the following characteristics:

write-back

direct-mapped

indexed with a physical address
checked with a physical tag

organized with either a 4-word (16-byte), 8-word (32-byte),
16-word (64-byte), or 32-word (128-byte) cache line.

The secondary cache state (CS) bits indicate whether:

the cache line data and tag are valid

the data is potentially present in the caches of other processors
(shared versus exclusive)

the processor is responsible for updating main memory (clean
versus dirty).

The Pldx field provides the processor with an index to the virtual address
of primary cache lines that may contain data from the secondary cache

line.

The Pldx field also detects a cache alias. Cache aliasing occurs when the
physical address tag matches during a data reference to the secondary
cache, but the Pldx field does not match in the virtual address. This
indicates that the cache reference was made from a different virtual
address than the one that created the secondary-cache line, and the
processor signals a Virtual Coherency exception.

MIPS R4000 Microprocessor User's Manual 253

Chapter 11

Accessing the Secondary Cache

Figure 11-7 shows the physical address (PA) index into the secondary
cache. The secondary cache ranges in size from 128 Kbytes to 4 Mbytes,
and the number of physical address bits used to index the cache depends
upon the cache size. Forinstance, PA(16:4) accesses the tags in a 128-Kbyte
secondary cache with 4-word lines; PA(21:5) accesses the tags in a 4-Mbyte
secondary cache with 8-word lines.

The processor always uses PA(35:17) from the secondary cache, regardless
of the S-cache size. This makes it important to initialize all secondary
cache tag address bits with a valid physical address, regardless of the size
of the S-cache.

—

Tags

Data

Tag line

PA(16:n*) for 128 Kbytg
to PA(16:n%)

PA(21:n*) for 4 Mbyte to)
PA(21:n%) Data line

P
>

ECC Cs Pldx Tag

*n = 4 for 4-word lines
n =5 for 8-word lines

n = 6 for 16-word lines
n =7 for 32-word lines

Data

Figure 11-7 Secondary Cache Data and Tag Organization

254 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

11.4 Cache States

The four terms below are used to describe the state of a cache line:

= Exclusive: a cache line that is present in exactly one cache in
the system is exclusive, and may be in one of the exclusive

states.

= Dirty: a cache line that contains data that has changed since it
was loaded from memory is dirty, and must be in one of the

dirty or shared states.

« Clean: a cache line that contains data that has not changed
since it was loaded from memory is clean, and may be in one

of the clean states.

=« Shared: a cache line that is present in more than one cache in

the system.

Each primary and secondary cache line in the R4000 system is in one of the
states described in Table 11-3. Table 11-3 also lists with the types of cache
and the R4000 models in which the various states may be found.

Table 11-3 Cache States

Cache Where the | Available on
Line Description State is |the Following
State Used R4000 Models

A cache line that does not contain valid
information must be marked invalid, and
cannot be used. For example, a cache line is Primary or | R4000PC
Invalid marked invalid if the same information, Secondary | R4000SC
located in another cache, is modified. A cache | Cache R4000MC
line in any other state than invalid is assumed
to contain valid information.
A cache line that is present in more than one Primary or R4000MC
Shared . . Secondary
cache in the system is shared. only
Cache
A dirty shared cache line contains valid
information and can be present in another
Dirty cache. This cache line is inconsistent with Secondary | R4000MC
Shared memory and is owned by the processor (see the | cache only | only
section titled Cache Line Ownership in this
chapter).
MIPS R4000 Microprocessor User's Manual 255

Chapter 11

Table 11-3 (cont.) Cache States

Cache Where the | Available on
Line Description Stateis |the Following
State Used R4000 Models

A clean exclusive cache line contains valid
information and this cache line is not presentin Primary or
Clean any other cache. The cache line is consistent Secon dgr R4000SC
Exclusive | with memory and is not owned by the Y | R400OMC
. . . Cache
processor (see the section titled Cache Line
Ownership in this chapter).
A dirty exclusive cache line contains valid
_ information and |s_not. p_resentlln any o_ther Primary or | R4000PC
Dirty cache. The cache line is inconsistent with
. . Secondary | R4000SC
Exclusive | memory and is owned by the processor (see the Cache RAO0DOMC
section titled Cache Line Ownership in this
chapter).

Primary Cache States

Each primary data cache line is in one of the following states:

< invalid
e shared
= clean exclusive
e dirty exclusive

Each primary instruction cache line is in one of the following states:

e invalid

< valid

Secondary Cache States

Each secondary cache line is in one of the following states:

< invalid

« shared

e dirty shared

= clean exclusive
e dirty exclusive

256

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Mapping States Between Caches

R4000PC

Secondary cache states correspond, or map, to primary cache states (this
mapping is listed in Table 11-6, later on in this chapter). For example, the
secondary cache shared and dirty shared states map to the primary cache
shared state.

Therefore, when the primary cache line is filled from the secondary cache,
the state of the secondary cache line is also mapped into the primary cache;
in the case described above, the shared or dirty shared secondary state is
mapped to the shared primary cache state.

As shown in Figure 11-8, a primary cache line in the R4000PC model can
be in either an invalid or dirty exclusive state. In the R4000SC model, a
primary cache line can be in the invalid, clean exclusive, or dirty exclusive
state. Inthe R4000MC model, the primary cache line can be invalid, clean
exclusive, dirty exclusive, or shared.

R4000SC R4000MC

Invalid State I Invalid State I Invalid State I

Dirty Exclusive State I Clean Exclusive State I Clean Exclusive State I

Dirty Exclusive State I Dirty Exclusive State I
Shared State I

Figure 11-8 Primary Cache States Available to Each Type of Processor

MIPS R4000 Microprocessor User's Manual 257

Chapter 11

11.5 Cache Line Ownership

A processor becomes the owner of a cache line after it writes to that cache
line (that is, by entering the dirty exclusive or dirty shared state), and is
responsible for providing the contents of that line on a read request.
There can only be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules
described below.

= A processor assumes ownership of the cache line if the state of
the secondary cache line is dirty shared or dirty exclusive.

= A processor that owns a cache line is responsible for writing

the cache line back to memory if the line is replaced during the
execution of a Write-back or Write-back Invalidate cache
instruction. For read responses to a processor coherent read
request (both of these terms are defined in Chapter 12) in which
the data is returned in the dirty shared or dirty exclusive state,
the cache state is set when the last word of read response data
is returned. Therefore, the processor assumes ownership of the
cache line when the last word of response data is returned.

= For processor coherent write requests, the state of the cache
line changes to invalid if the cache line is replaced, or to either
clean exclusive or shared if the cache line is retained (provided
the cache line was written back to memory). In either case, the
cache state transition occurs when the last word of write data is
transmitted to the external agent. Therefore, the processor
gives up ownership of the cache line when the last word of
write data is transmitted to the external agent (Chapter 12
defines external agent).

< Memory always owns clean cache lines.

= The processor gives up ownership of a cache line when the
state of the cache line changes to invalid, shared, or clean
exclusive.

258 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

11.6 Cache Write Policy

The R4000 processor manages its primary and secondary caches by using
a write-back policy; that is, it stores write data into the caches, instead of
writing it directly to memory.T Some time later this data is independently
written into memory. In the R4000 implementation, a modified cache line
is not written back to memory until the cache line is replaced either in the
course of satisfying a cache miss, or during the execution of a Write-back
CACHE instruction.

If a primary cache line is in either the dirty exclusive or shared state and
that cache line has been modified (the W bit is set), the processor writes
this cache line back to memory (or the secondary cache, if it is present)
when the line is replaced, either in the course of satisfying a cache miss or
during the execution of a Write-back or Write-back Invalidate CACHE
instruction.

If a secondary cache line is in either the dirty exclusive or dirty shared
state, the processor writes this cache line back to memory when the line is
replaced, either in the course of satisfying a cache miss or during the
execution of a Write-back CACHE instruction.

Many systems, in particular multiprocessor systems, or systems
employing 1/0 devices that are capable of DMA, require the system to
behave as if the caches are always consistent both with memory and with
each other. Schemes for maintaining consistency between more than one
cache, or between caches and memory, are defined by the system cache
coherency protocols (see the section titled Cache Coherency Overview
later in this chapter). Inthe R4000 system, when the content of a cache line
is inconsistent with memory, it is classified as dirty and is written back to
memory according to the rules of the cache write-back policy.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there is one exception. The processor
retains a copy of the cache line if a cache line is written back by the Hit
Write-back cache instruction. The processor changes the retained cache
line state to either clean exclusive if the secondary cache state was dirty
exclusive before the write, or shared if the secondary cache state was dirty
shared before the write. The processor signals this line retention during a
write by setting SysCmd(2) to a 1, as described in Chapter 12.

t An alternative to this is a write-through cache, in which information is written
simultaneously to cache and memory.

MIPS R4000 Microprocessor User's Manual 259

Chapter 11

11.7 Cache State Transition Diagrams

The following sections describe the cache state diagrams that illustrate the
cache state transitions for both the primary and secondary caches. Figures
11-9 and 11-10 are state diagrams of the primary and secondary caches,
respectively.

When an external agent supplies a cache line, the initial state of the cache
line is specified by the external agent (see Chapter 12 for a definition of an
external agent). Otherwise, the processor changes the state of the cache
line during one of the following events:

e A store to a clean exclusive cache line causes the state to be
changed to dirty exclusive in both the primary and secondary
caches.

= A store to a shared cache line—that is a line marked shared in
the primary cache and either shared or dirty shared in the
secondary cache—causes the processor to issue either an
invalidate request or an update request (depending on the
coherency attribute in the TLB entry for the page containing
the cache line). And update page attribute causes an update
request to be issued; a sharable page attribute causes an
invalidate request to be issued.

- Upon successful completion of an invalidate, the
processor completes the store and changes the state of the
cache line to dirty exclusive in both the primary and
secondary caches.

- Upon successful completion of an update, the processor
completes the store and changes the state of the cache line
to shared in the primary cache and dirty shared in the
secondary cache if dirty shared mode is enabled. Dirty
shared mode is programmable through the boot-time
mode control interface (see Chapter 9 for a description of
boot mode bits). If dirty shared mode is not enabled, the
state of the primary and secondary caches are left in a
shared state, after successful completion of an update.

= A store to a dirty exclusive line remains in a dirty exclusive
state.

These state diagrams do not cover the initial state of the system since the
initial state is system dependent.

260 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

1/0 invalidate received

Clean
Exclusive

A

-————

1/0 invalidate received Read hit
A
Invalidate received
Write hit

Write hit [update]

Read hit Bus read
Update received Write hit

— Read hit

D

Write hit [sharable]

\ Bus read [intervention]

Figure 11-9 Primary Data Cache State Diagram

If the system is in no-secondary-cache mode, the cache state provided by

the system is ignored, and the primary data cache state is set to dirty
exclusive.

MIPS R4000 Microprocessor User's Manual 261

Chapter 11

110
) invalidate
Invalidate received
received

invalidate
received

Invalidate
received

Shared Exclusive

Read hit,

Update received Read hit

Write hit

[update] Update

received Write hit Write hit

Y [invalidate]

Bus read [intervention]
Write hit [update],
Read hit

Write hit [invalidate] Read hit,

Write hit

Dirty
Shared

Dirty
Exclusive

Bus read [intervention]

Figure 11-10 Secondary Cache State Diagram

262 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

The state of a secondary cache line is provided by the external agent and
is set as follows:

Case 1. Ifthe cache lineis not present in another cache, it should be loaded
in the clean exclusive state.

Case 2. If the cache line is retained by another cache and the state of the
line in that cache remains shared or dirty shared, the line should
be loaded in the shared state.

Case 3. If the cache line is retained by another cache and the cache
relinquishes ownership to the processor making the read request,
the line should be returned in the dirty shared state.

Case 4. If the cache line is retained by another cache and ownership is
relinquished to memory, the line should be loaded in the shared
state.

Case 5. If the cache line is relinquished by another cache and ownership
is transferred to the processor making the read request, the line
should be loaded in the dirty exclusive or dirty shared state.

For case 1, if the refill occurs on a store miss, the processor changes the
cache line state to dirty exclusive. For each of the remaining cases listed
above, the R4000 processor passes the state received from the external
agent to the secondary cache.

The invalid state is never used for a refill. Software, however, should
initialize the secondary cache to the invalid state after the system is
powered up.

MIPS R4000 Microprocessor User's Manual 263

Chapter 11

11.8 Cache Coherency Overview

Systems using more than one R4000MC processor must have a mechanism
to maintain data consistency throughout a multi-cache, multiprocessor
system. This mechanism is called a cache coherency protocol.

Cache Coherency Attributes

Cache coherency attributes are necessary to ensure the consistency of data
throughout the multitude of caches that can be present in the
multiprocessor environment.

Bits in the translation look-aside buffer (TLB) control coherency on a per-
page basis. Specifically, the TLB contains 3 bits per entry that provide five
possible coherency attributes; they are listed below and described more
fully in the following sections.

= uncached (R4000PC, R4000SC, R4000MC)

< noncoherent (R4000PC, R4000SC, R4000MC)

< sharable (R4000MC only, with secondary cache)
= update (R4000MC only, with secondary cache)

= exclusive (R4000MC only, with secondary cache)

Only uncached or noncoherent attributes can be used by an R4000PC or an
R4000SC processor.

Table 11-4 summarizes the behavior of the processor on load misses, store
misses, and store hits to shared cache lines for each of the five coherency
attributes listed above. The following sections describe in detail the five
coherency attributes.

Table 11-4 Coherency Attributes and Processor Behavior

Attribute Load Miss Store Miss Store Hit Shared
Uncached Main memory read Main memory write NA
Noncoherent | Noncoherent read Noncoherent read Invalidate T
Exclusive Coherent read exclusive | Coherent read exclusive | Invalidate T
Sharable Coherent read Coherent read exclusive | Invalidate
Update Coherent read Coherent read Update

T These should not occur under normal circumstances.

264

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Uncached

Lines within an uncached page are never in a cache. When a page has the
uncached coherency attribute, the processor issues a doubleword, partial-
doubleword, word, or partial-word read or write request directly to main
memory (bypassing the cache) for any load or store to a location within
that page.

Noncoherent

Lines with a noncoherent attribute can reside in a cache; a load or store miss
causes the processor to issue a noncoherent block read request to a
location within the cached page.

Sharable

Lines with a sharable attribute must be in a multiprocessor environment
(using the R4000MC), since shared lines can be in more than one cache at
atime. When the coherency attribute is sharable, the processor operates as
follows:

= acoherent block read request is issued for a load miss to a
location within the page, or

= acoherent block read request that requests exclusivity is issued
for a store miss to a location within the page.

In most systems, coherent read requests require snoops or directory
checks, and noncoherent read requests do not.” Cache lines within the
page are managed with a write invalidate protocol; that is, the processor
issues an invalidate request on a store hit to a shared cache line.

Update

Lines with an update coherency attribute must be in a multiprocessor
environment and can reside in more than one cache at a time. When the
coherency attribute is update, the processor issues a coherent block read
request for a load or store miss to a location within the page. Cache lines
within the page are managed with a write update protocol; that is, the
processor issues an update request on a store hit to a shared cache line.

t A coherent read that requests exclusivity implies that the processor functions most
efficiently if the requested cache line is returned to it in an exclusive state, but the
processor still performs correctly if the cache line is returned in a shared state.

MIPS R4000 Microprocessor User's Manual 265

Chapter 11

Exclusive

Lines with an exclusive coherency attribute must be in a multiprocessor
environment. When the coherency attribute is exclusive, the processor
issues a coherent block read request that requests exclusivity for a load or
store miss to a location within the page.

Cache lines within the page are managed with a write invalidate protocol.

NOTE: Load Linked-Store Conditional instruction sequences must
ensure that the link location is not in a page managed with the
exclusive coherency attribute.

Cache Operation Modes

The R4000 processor supports the following two cache modes:

= secondary-cache mode (R4000MC and R4000SC models; for
R4000MC all five cache coherency attributes described above
are applicable, and for R4000SC only uncached and
noncoherent coherency attributes are applicable)

= no-secondary-cache mode (only uncached and noncoherent
coherency attributes are applicable).

Secondary-Cache Mode

In its secondary-cache mode, an R4000MC model provides a set of cache
states and mechanisms that implement a variety of cache coherency
protocols. In particular, the processor simultaneously supports both the
write-invalidate and write-update protocols.

No-Secondary-Cache Mode

A processor in no-secondary-cache mode supports the uncached and
noncoherent coherency attributes. These two attributes are described in
the section titled Cache Coherency Attributes in this chapter.

266 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Strong Ordering

Cache-coherent multiprocessor systems must obey ordering constraints
on stores to shared data. A multiprocessor system that exhibits the same
behavior as a uniprocessor system in a multiprogramming environment is
said to be strongly ordered.

An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is,

they are not in the same cache line—an example of strong ordering is as

follows:

1. Attime T, Processor A performs a store to location X and at the same
time processor B performs a store to location Y.

2. Attime T+1, Processor A does a load from location Y and at the same
time processor B does a load from location X.

For the system to be considered strongly ordered, either processor A must
load the new value of Y, or processor B must load the new value of X, or
both processors A and B must load the new values of Y and X, respectively,
under all conditions.

If processors A and B load old values of Y and X, respectively, under any
conditions, the system is not strongly ordered.

Testing for Strong Ordering

Table 11-5 shows the algorithm for testing strong ordering.

Table 11-5 Algorithm for Testing Strong Ordering

Time Processor A Processor B
T Store to location X Store to location Y
T+1 Load from location Y Load from location X

For this algorithm to succeed, stores must have a global ordering in time;
that is, every processor in the system must agree that either the store to
location X precedes the store to location Y, or vice versa. If this global
ordering is enforced, the test algorithm for strong ordering succeeds.

MIPS R4000 Microprocessor User's Manual 267

Chapter 11

Restarting the Processor

Strong ordering requires precise control of a processor restart.
Specifically, after completion of a processor coherency request, the system
must ensure the completion of any cache state changes before allowing a
processor restart.

The following sections describe processor restarts in a strong-ordered
system after a processor coherency request.

Restart after a Coherent Read Request

Unless a processor invalidate or update request is unacknowledged after
a coherent read request, the processor restarts (if sequential ordering is
enabled) after the last word in the block has been transmitted to the
processor.

Any external requests that must be completed before the read request is
finished must be issued to the processor before the read response is issued.

Restart after a Coherent Write Request

The processor restarts after the coherent write request is completed. That
is, the processor restarts after the last doubleword of data associated with
the write request has been transmitted to the external agent, unless a
processor read request is pending,T or a processor invalidate or update
request is unacknowledged.

Restart after an Invalidate or Update Request

Following an invalidate or update request, the processor restarts after the
external agent asserts IvdAck* or IvdErr*, unless a processor read request
is pending or the processor is processing an external request when either
IvdAck* or IvdErr* is asserted.

If either IvdAck* or IvdErr* is asserted during or after the first cycle that
the external agent asserts ExtRqst*, the processor accepts the external
request and completes any cache state changes associated with the
external request before restarting.

t That is, present but not yet executed.

268 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

If either IvdAck* or IvdErr* is asserted before, but not asserted during or
after the first cycle that the external agent asserts ExtRqst*, the processor
restarts before beginning the external request.

External requests must be completed before a processor invalidate or
update completes. They can be completed, provided the processor
receives an asserted ExtRqst* by the external agent either before or during
the same cycle IvdAck* or IvdErr* is asserted.

11.9 Maintaining Coherency on Loads and Stores

Cache coherency protocols maintain data consistency throughout a
multiprocessor environment. Table 11-6 lists the coherency effects of load
and store operations on primary and secondary cache states in a
multiprocessor environment (using an R4000MC processor).

Table 11-6 R4000MC Data Cache Coherency States

Primary Secondary |Action on Action on
Cache States Cache States Load Store
Invalid Any Miss Miss
Read secondary tag. If the coherency
algorithm is Update on Write, then
send update and set the secondary
Shared cache state to Dirty Shared. If the
. None . . .
Dirty Shared coherency algorithm is Invalidate on
Shared Write, then send invalidate and set the
primary and secondary cache states to
Dirty Exclusive.
Dirty Exclusive | None Set the_prlmary cache state to Dirty
Exclusive.
Clean Set the primary and secondary cache
. None . .
) Exclusive states to Dirty Exclusive.
Clean Exclusive et th - r H
Dirty Exclusive | None gtt e primary ata cache state to
Dirty Exclusive.
Dirty Exclusive’ | Dirty Exclusive | None None

t The dirty exclusive primary state

secondary access.

allows the primary cache to be written without a

MIPS R4000 Microprocessor User's Manual

269

Chapter 11

11.10 Manipulation of the Cache by an External Agent

Just as the processor accesses caches, so too can an external agent examine
and manipulate the state and content of the primary and secondary caches
through invalidate, update, snoop, and intervention transactions.

These transactions are described in the following sections. Encodings of
these request transactions are given in Chapter 12.

Invalidate

An invalidate request causes the processor to change the state of the
specified cache line to invalid in both the primary and secondary caches.

Update

An update request causes the processor to write the specified data element
into the specified cache line, and either change the state of the cache line
to shared in both the primary and secondary caches, or leave the state of
the cache line unchanged, depending on the nature of the update request.
An external agent can issue updates to cache lines that are in either the
exclusive or shared states without changing the state of the cache line (see
the SysCmd(3) bit description in Chapter 12).

NOTE: Ifthere is an update to a line in the primary instruction cache,
the line in the secondary cache is updated and the primary instruction
cache line is invalidated.

Snoop

A snoop request to the processor causes the processor to return the
secondary cache state of the specified cache line.

At the same time, the processor atomicaIIyJr sets the state of the specified

cache line in both the primary and secondary caches according to the value
of the SysCmd(2:0) bits, which define cache state change, and are supplied
by the external agent.

t An atomic operation is one that cannot be split, or portions of it deferred. In this case, the
processor sets the state of both secondary and primary caches in an indivisible action; it
cannot set the state of one cache line, allow another process to interrupt, and then
complete the first process by setting the state of the remaining cache line.

270 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Intervention

An intervention request causes the processor to return the secondary
cache state of the specified cache line and, under certain conditions related
to the state of the cache line and the nature of the intervention request, the
contents of the specified secondary cache line.

At the same time, the processor atomically sets the state of the specified
cache line in both the primary and secondary caches according to the value
of the SysCmd(2:0) bits which define cache state change, and are supplied
by an external agent.

11.11 Coherency Conflicts

The R4000MC processor must handle competing coherency conflicts that
arise from the processor and an external source. This section describes
how coherency conflicts arise and how they are handled. A system model
illustrates the implications of coherency conflicts in a multiprocessor
environment; a coherent read request cycle is described at the end of this
section.

Figure 11-11 shows the R4000MC processor issuing processor coherency
requests and accepting external coherency requests.

RAOOOMC processor coherency request
» coherent read
« invalidate
* update External Agent
« invalidate
* update

external coherency request « snoop
* intervention

Figure 11-11 Coherency Requests: Processor and External

MIPS R4000 Microprocessor User's Manual 271

Chapter 11

The R4000MC processor issues the following processor coherency
requests:

= processor coherent read requests
= processor invalidate requests
= processor update requests

The R4000MC processor accepts the following external coherency
requests:

= external invalidate requests

= external update requests

= external snoop requests

= external intervention requests

How Coherency Conflicts Arise

Because of the overlapped nature of the system interface, it is possible for
an external coherency request to target the same cache physical address as
a pending processor read request, an unacknowledged processor
invalidate, or an update request. The processor does not contain the
comparison mechanism necessary to detect such conflicts; instead, it uses
the secondary cache as a point of reference to determine suitable
coherency actions, and only checks the state of the secondary cache at
specific times.

Processor Coherent Read Requests

When the processor wants to service either a store or load cache miss for a
page that has a coherent page attribute in the TLB (meaning the data
passed back and forth should follow a defined multiprocessor coherency
scheme), a coherent read request is used.

Conflicting external coherency requests cannot affect the behavior of the
processor for pending processor coherent read requests. The processor
only issues read requests for a range of physical addresses not currently in
the cache; consequently, an external coherency request that targets the
same physical address range will not find this physical address range in
the cache. In such a case, the processor simply discards any external
coherency requests that conflict with a pending processor coherent read
request.

272

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Processor Invalidate or Update Requests

For processor invalidate or compulsory update requests, a cancellation
mechanism indicates a conflict. For example, if an external coherency
request is submitted while a processor invalidate or compulsory update
request has been issued but not yet acknowledged, the conflict is resolved
when the external agent cancels the processor invalidate or compulsory
update.

Cancellation is accomplished by setting the cancellation bit in the
command for the coherency request [SysCmd(4)]. The processor, upon
receiving an external coherency request with the cancellation bit set,
considers its invalidate or update request to be acknowledged and
cancelled. The processor again accesses the secondary cache to determine
whether to reissue the invalidate or update request, or to issue a read
request.

An external agent can only assert the cancellation bit during an
unacknowledged processor invalidate or unacknowledged compulsory
update request. If an external coherency request is issued with the
cancellation bit set, and there is no unacknowledged processor invalidate
or update request pending, the behavior of the processor is undefined.

If an external coherency request is issued with the cancellation bit set
when a processor update request remains potential—in other words,
while a processor read request is currently pending—the behavior of the
processor is undefined.

Processor potential update requests cannot be cancelled. Potential
updates are always issued with processor read requests and become
compulsory only after the response to the processor read request is
returned in one of the shared states.

MIPS R4000 Microprocessor User's Manual 273

Chapter 11

External Coherency Requests

If an external agent issues an external coherency request that conflicts with
an unacknowledged processor invalidate or update request, without
setting the cancellation bit, the system will operate in an undefined
manner. In this case, the processor has no indication of the conflict and
does not reevaluate the cache state to determine the correct action; it
simply waits for an acknowledge to its invalidate or update request as it
would for any invalidate or update request.

It is not possible for external coherency requests to conflict with processor
write requests, since the processor does not accept external requests while
a processor write request is in progress.

Tables 11-7 and 11-8 summarize the interactions between processor
coherency requests and conflicting external coherency requests, organized
by processor state. These two tables show the processor in one of the
following states:

Idle: no processor transactions are pending.

Read Pending: a processor coherent read request has been issued,
but the read response has not been received.

Potential Update Unacknowledged: a processor update request
has been issued while a processor coherent read request is pend-
ing but not yet acknowledged. By definition, therefore, the re-
sponse to the coherent read request has not been received.

Invalidate or Update Unacknowledged: a processor invalidate or
update request has been issued but has not yet been acknowl-
edged. By definition, no coherent read request is pending.

274 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Table 11-7 Summary of Coherency Conflicts: Invalidate and Update

Conflicting External Coherency Request
Processor Invalidate Update
State ' Vv
Invalidate with Cancel Update with Cancel

Idle NA Undefined NA Undefined
Read Pending OK Undefined OK Undefined
Potential Update Unacknowledged | OK Undefined OK Undefined
Invalidate or Update + +
Unacknowledged OK OK OK OK

t This can cause incorrect system operation and normally should not be allowed to occur.

Table 11-8 Summary of Coherency Conflicts: Intervention and Snoop

Conflicting External Coherency Request

Unacknowledged

Processor nt i s
State . ntervention noop
Intervention with Cancel Snoop with Cancel

Idle NA Undefined NA Undefined
Read Pending OK Undefined OK Undefined
Potential Update OK Undefined |OK | Undefined
Unacknowledged
Invalidate or Update ok OK ok OK

t This can cause incorrect system operation and normally should not be allowed to occur.

System Implications of Coherency Conflicts

The constraints that the processor must place on the handling of coherency
conflicts have certain implications on the design of a multiprocessor
system using the R4000MC model. These constraints and their
implications are described in this section.

MIPS R4000 Microprocessor User's Manual

275

Chapter 11

System Model

To describe the implications of a coherency conflict, this section uses a
system model that is snooping, split-read, and bus-based; I/0 is not
considered in this model.

The system model used in this example has the following components:

Four processor subsystems, each consisting of an R4000MC
processor, a secondary cache, and an external agent (shown in
Figure 11-12). The external agent communicates with the
R4000MC processor, accepting processor requests and issuing
external requests. Likewise, the system bus issues and receives
bus requests.

A memory subsystem that communicates with main memory
and the system bus.

A system bus that has the following characteristics:

- It is a multiple master, request-based, arbitrated bus.
When an agent wishes to perform a transaction on the
bus, it must request the bus and wait for global
arbitration logic to assert a grant signal before assuming
mastership of the bus. Once mastership has been
granted, the agent can begin a transaction.

- It supports read transactions, read exclusive transactions,
write transactions, and invalidate transactions.

- It is a split-read bus. This means bus operations can
separate a read request from the return of its data.

- It is a snooping bus. All agents connected to the bus
must monitor all bus traffic to correctly maintain cache
coherency.

All of the TLB pages in the system have either a noncoherent or
a sharable coherency attribute. (Noncoherent data is not
allowed; noncoherent page attributes are used for instructions

only.)
The sharable coherency attribute allows data to be shared

between the four caches in the system by using a write
invalidate cache coherency protocol.

The secondary cache states used are invalid, shared, clean
exclusive, and dirty exclusive; the dirty shared secondary
cache state is not allowed.

276

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Subsystem 4 A

External
Agent

A
Y

Subsystem 3

R4000MC
External

Agent

Main
Memory

R4000MC

Subsystem 2

External
Agent

A
A

System Bus

R4000MC Subsystem 1

External
Agent

R4000MC

Figure 11-12 4-Processor System Illustrating Coherency Transactions

Given this system model, the following operations are described:
= loads and stores
= processor coherent read request and read response
= processor invalidate

e processor write

MIPS R4000 Microprocessor User's Manual 277

Chapter 11

Load
A shown in Figure 11-12, when a processor misses in the primary and
secondary caches on a load, the processor issues a read request. The
subsystem external agent translates this to a read request on the bus. The
returned data is loaded in either the clean exclusive or shared state, based
on the shared indication returned with the read response data.’

Store

In this system model, when a processor misses in the primary and
secondary caches on a store, it issues a read request with exclusivity; this
is translated to a read exclusive on the bus and data is loaded in the dirty
exclusive state.

When a processor hits in the cache on a store to shared data, it issues an
invalidate request that must be forwarded to the system bus. Before the
store can be completed and the state changed to dirty exclusive, the
invalidate request must be acknowledged.

Processor Coherent Read Request and Read Response

In this system model, when one of the external agents observes a coherent
read request on the system bus, it does not take immediate action. Instead,
the external agent issues an intervention request to its processor during
the read response. This is referred to as a response complete read protocol;
that is, the read is complete after the read response has occurred.

At the end of the read response, each of the external agents in the system
model indicate whether it was able to obtain the state of the cache line that
is the target of the intervention; if successful, the external agent indicates
either sharing or takeover. Takeover occurs when an external agent
discovers that its processor has a dirty exclusive copy of the cache line that
is the target of the read.

The read response is extended until all external agents have obtained the
state of the cache line from their processors.

In this system model, the response from an external agent at the end of a
read response depends on whether the read request was an ordinary read
request or a read exclusive request. These are described in the following
sections.

T The shared indication is the result of an intervention request to another processor, and is
supplied by an external agent that is a part of the other three processor subsystems.

278 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Ordinary Read Request

For an ordinary read request, an external agent indicates shared at the end
of the read response if it finds that its processor has a copy of the requested
cache line in the clean exclusive or shared state.

An external agent indicates both shared and takeover at the end of a read
response if it finds that its processor has a copy of the requested cache line
in the dirty exclusive state. Having indicated takeover, the external agent
supplies the contents of the cache line (returned by the processor in
response to the intervention request) over the bus to the read requester,
and causes the processor to change the state of the cache line to shared. At
the same time the cache line is supplied to the read requester, it is also
written back to memory.

Read Exclusive Request

For a read exclusive request, an external agent never indicates shared at
the end of the read response, regardless of the state the cache line is in.
Instead, the cache line must be in one of the following states:

= |If the current state of the cache line is clean exclusive or shared,
the external agent changes the state of the cache line to invalid.

= If the current state of the cache line is dirty exclusive, the
external agent indicates takeover but not shared. Having
indicated takeover, the external agent supplies the contents of
the cache line to the read requester, and the processor changes
the state of the cache line to invalid. While the cache line is
supplied to the read requester, it is also written back to
memory.

Processor Invalidate

In this system model, an invalidate request is considered complete as soon
as it appears on the system bus. When an external agent observes an
invalidate request on the system bus, it reacts as if the invalidate has
changed the state of all caches at that instant.

Processor Write

In this system model, an external agent takes no action in response to a
write request on the bus.

MIPS R4000 Microprocessor User's Manual 279

Chapter 11

Handling Coherency Conflicts

Coherency conflicts are examined and resolved based on the current state
of the processor. Referring to Figure 11-12, the following conflicts and
their resolutions are described in this section:

= coherent read conflicts
= coherent write conflicts
« invalidate conflicts

Coherent Read Conflicts

External coherency requests that conflict with pending processor coherent
read requests can be issued to the processor without affecting processor
behavior. In the system model shown in Figure 11-12, no conflict
detection is performed by the external agent for processor coherent read
requests; if an external intervention request or invalidate request is
forwarded to the processor that is in conflict with a pending processor
coherent read request, it does not affect the processor cache since the
targeted cache line is, by definition, absent from the cache. The processor
effectively discards the conflicting external intervention request,
responding with an invalid indication for the targeted cache line.
Similarly, the processor discards a conflicting external invalidate request
since the targeted cache line is not present and therefore invalid.

For pending processor coherent read requests, conflict detection could be
added to a system similar to the one shown in Figure 11-12. In such a case,
when the external agent sees a read response on the bus that conflicts with
a pending processor coherent read request, the external agent does not
issue an intervention request to the processor. Rather, it simply reacts as
if an intervention request has been completed and the cache line is not
present in the processor cache.

Similarly, when an external agent sees an invalidate request on the bus
that conflicts with a pending processor coherent read request, it does not
forward the invalidate request to the processor since the targeted cache
line is absent from the processor cache. This scheme for conflict detection
on processor coherent read requests could reduce the number of external
intervention and invalidate requests issued to the processor. However,
since the intervention and invalidate requests that would otherwise be
issued to the processor cannot result in any state modification within the
processor (since the targeted cache line is not present in the cache), conflict
detection for processor coherent read requests is not necessary.

280

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Coherent Write Conflicts

As soon as a write request has been issued to the external agent, the
external agent becomes responsible for the cache line. No conflicts are
possible with a processor write request; however, the external agent must
manage ownership of the cache line while it is waiting to acquire
mastership of the system bus so that it can forward the write request. The
external agent is responsible for the cache line from the time the issue cycle
of the write request completes until the write request is forwarded to the
system bus.

If the response to a coherent read request conflicts with a waiting
processor write request, or with a processor write request that is
transmitting data, the external agent detects the conflict and does not issue
an intervention request to the processor. Instead, it reacts as if an
intervention request has been completed and the line is in the dirty
exclusive state. The external agent indicates takeover and supplies the
read data to the read requester itself without disturbing the processor.
After providing the read data to the read requester, the external agent
must discard the write request if the read request was a read exclusive. In
fact, the external agent can ignore the write request for either type of read,
since processor-supplied read data is also written back to memory.

It is not possible for an invalidate request, or a write request that conflicts
with a waiting processor write request, to appear on the system bus;
before a processor write request can be issued, the state of the processor
cache line must be set to dirty exclusive.

MIPS R4000 Microprocessor User's Manual 281

Chapter 11

Invalidate Conflicts

From the time the processor issues an invalidate request until that request
is acknowledged, any external coherency request issued to the processor
that conflicts with the unacknowledged invalidate must include a
cancellation.

In the model system shown in Figure 11-12, an acknowledge for the
invalidate is sent to the processor as soon as the invalidate is forwarded to
the system bus. Therefore, while the external agent is waiting to become
a bus master to forward the invalidate request, the external agent must
detect, by using comparators, any external coherency request that conflicts
with the unacknowledged invalidate. If a conflict is detected, the external
agent must not forward the invalidate request to the system bus; instead,
it must rescind the invalidate request and submit the conflicting external
request to the processor, with a cancellation for the invalidate request.

If the response to a coherent read request conflicts with a waiting
unacknowledged processor invalidate request, the external agent detects
this conflict and does not forward the processor invalidate request to the
bus. Instead, it discards the processor invalidate request and issues to the
processor an intervention request that includes a cancellation. The
processor then reevaluates its cache state and either reissues the invalidate
request or issues a coherent read request.

If an invalidate request appears on the bus while the external agent has a
processor invalidate request waiting, and the external agent detects the
conflict, the external agent does not forward the processor invalidate
request. Instead, it discards the processor invalidate request and issues an
external invalidate request that includes a cancellation to the processor.
The processor then reevaluates its cache state and either reissues the
invalidate request or issues a coherent read request.

Itis not possible for a write request that conflicts with a waiting processor
invalidate request to appear on the system bus. To issue an invalidate
request, the state of the cache line must be shared with every cache in the
system that contains the line.

282

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Sample Cycle: Coherent Read Request

This section describes a multiprocessor system within which a coherent
read request cycIeJr services a secondary cache load miss. The system has
two processors, P and Pg, and two external agents linked to these
processors, external agent A (Ep) and external agent B (Eg). The external
agents connect the processors to a system bus. Each of the processors has
its own secondary cache.

The sample cycle follows the steps below (these steps are also numbered
in Figures 11-13, 11-14, and 11-15);

1. Processor B has a load miss within a sharable page.

2. Processor B issues a coherent read request (CRR) through Eg.

3. The CRR is placed on the bus.

System Bus

Coherent Read Request (CRR)

External External
Agent A (Ep) Agent B (Eg)
A

Processor Processor
A (Pa) B (Pg)
T
1
\
INV
Secondary Secondary
Cache A (Sp) Cache B (Sg)

Figure 11-13 Cache Load Miss Cycle: Coherent Read Request

T Request Cycles are described in Chapter 12.

MIPS R4000 Microprocessor User's Manual 283

Chapter 11

System Bus 3

4
External External
Agent A (Ep) 5 Agent B (Eg)
n__________________ EXtern?' '—“ 2
Intervention
Y § Request (EIR)
Processor Processor
A (Pp) B (Ps)

Secondary Secondary
Cache A (Sp) Cache B (Sg)

Figure 11-14 Cache Load Miss Cycle: External Intervention

4. Asshown in Figure 11-14, external agent E reads the CRR from the
bus.

5. Toservice this CRR, Ep issues an external intervention request (EIR)
to processor A, Pa.

P receives the EIR and examines its secondary cache, Sa.

Depending on the type of intervention request—based on the state of
the SysCmd(3) bit—one of the following actions is taken:

= If the cache line in Sp is in the dirty exclusive state, the entire
cache line is returned.

= Otherwise, Pp just returns the state of the secondary cache line.
In Figure 11-14 the retrieved data is in the dirty exclusive state (DE),

servicing a load miss, when the state of cache line Sy goes from dirty
exclusive to dirty shared (DS),T indicating P4 is owner of the line.

T Assuming DS mode is enabled.

284 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

System Bus

3

External
Agent A (Ep)

Y

Processor
A (Pa)

Secondary
Cache A (Sp)

Figure 11-15 Cache Load Miss Cycle: Read Response

Read 1
Response

11

External
Agent B (Eg)
A

\
Processor
B (Pg)

Secondary
Cache B (Sg)

8. Figure 11-15 shows the cache state and cache data returned from Pp,

through Ex to the bus.

9. This cache state and data are returned to Eg.

10. Egissues a read response to Pg.

11. P, remains owner of the cache line.

MIPS R4000 Microprocessor User's Manual

285

Chapter 11

11.12 R4000 Processor Synchronization Support

In a multiprocessor system, it is essential that two or more processors
working on a common task execute without corrupting each other’s
subtasks. Synchronization, an operation that guarantees an orderly access
to shared memory, must be implemented for a properly functioning
multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter.

Test-and-Set (Spinlock)

Test-and-set uses a variable called the semaphore, which protects data
from being simultaneously modified by more than one processor.

In other words, a processor can lock out other processors from accessing
shared data when the processor is in a critical section, a part of program in
which no more than a fixed number of processors is allowed to execute. In
the case of test-and-set, only one processor can enter the critical section.

Figure 11-16 illustrates a test-and-set synchronization procedure that uses
a semaphore; when the semaphore is set to 0, the shared data is unlocked,
and when the semaphore is set to 1, the shared data is locked.

t Test-and-set is sometimes referred to as spinlock.

286 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

L

1. Load semaphore

2. Unlocked?
(=0?)

Yes

3. Try locking
semaphore

S

Yes

5. Execute critical section
(Access shared data)

Y

6. Unlock semaphore

[

Continue processing

Figure 11-16 Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it is
unlocked (setto 0) in steps 1 and 2. If the semaphore is not 0, the processor
loops back to step 1. If the semaphore is 0, indicating the shared data is
not locked, the processor next tries to lock out any other access to the
shared data (step 3). If not successful, the processor loops back to step 1,
and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it executes
the critical section of code (step 5) and gains access to the shared data,
completes its task, unlocks the semaphore (step 6), and continues
processing.

MIPS R4000 Microprocessor User's Manual 287

Chapter 11

Counter

Another common synchronization technique uses a counter. A counter is a
designated memory location that can be incremented or decremented.

In the test-and-set method, only one processor at a time is permitted to
enter the critical section. Using a counter, up to N processors are allowed
to concurrently execute the critical section. All processors after the Nth
processor must wait until one of the N processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.). Figure 11-17 shows this process.

Y

Load counter

No

Yes

Try decrementing
counter

Figure 11-17

A

Execute critical section

l /

Load counter

Y

Try incrementing
counter

No

Yes

Continue processing

Synchronization Using a Counter

288

MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

LL and SC

MIPS instructions Load Linked (LL) and Store Conditional (SC) provide
support for processor synchronization. These two instructions work very
much like their simpler counterparts, load and store. The LL instruction,
in addition to doing a simple load, has the side effect of setting a bit called
the link bit. This link bit forms a breakable link between the LL instruction
and the subsequent SC instruction. The SC performs a simple store if the
link bit is set when the store executes. If the link bit is not set, then the store
fails to execute. The success or failure of the SC is indicated in the target
register of the store.

The link is broken in the following circumstances:

if any external request (invalidate, snoop, or intervention)
changes the state of the line containing the lock variable to
invalid

upon completion of an ERET (return from exception)
instruction

an external update to the cache line containing the lock
variable

The most important features of LL and SC are:

They provide a mechanism for generating all of the common
synchronization primitives including test-and-set, counters,
sequencers, etc., with no additional overhead.

When they operate, bus traffic is generated only if the state of
the cache line changes; lock words stay in the cache until some
other processor takes ownership of that cache line.

Tt The most obvious case where the link is broken occurs when an invalidate to the cache line
is the subject of the load. In this case, some other processor has successfully completed a
store to that line.

MIPS R4000 Microprocessor User's Manual 289

Chapter 11

Examples Using LL and SC

Figure 11-18 shows how to implement test-and-set using LL and SC
instructions.

Y l
Load semaphore Loop: LL r2,(r1)
ORI r3,r2,1
Unlocked? BEQ r3,r2,Loop
(=0?) NOP
Yes
Try locking SCr3,(r1)
semaphore
No BEQ r3,0,Lo0p
NOP
Yes

Execute critical section
(Access shared data)

Y

Unlock semaphore SWr2,(r1)

Figure 11-18 Test-and-Set using LL and SC

290 MIPS R4000 Microprocessor User's Manual

Cache Organization, Operation, and Coherency

Figure 11-19 shows synchronization using a counter.

Y
Load counter Loopl: LL r2,(r1)
No
BLEZ r2,Loopl
NOP
Yes
Try decrementing SUB r3,r2,1
counter SC r3,(r1)
No
BEQ r3,0,Loopl
NOP
Yes
Execute critical section -
L A
Load counter Loop2: LL r2,(r1)
A
Try incrementing ADDr3,r2,1
counter SC r3,(r1)
No
BEQ r3,0,Loop2
NOP
Yes
Continue processing

Figure 11-19 Counter Using LL and SC

MIPS R4000 Microprocessor User's Manual 291

Chapter 11

292 MIPS R4000 Microprocessor User's Manual

System Interface

12

The System interface allows the processor to access external resources
needed to satisfy cache misses and uncached operations, while permitting
an external agent access to some of the processor internal resources.

In the R4000MC configuration, the System interface also provides the
processor with mechanisms to maintain the cache coherency of shared
data, while providing an external agent the mechanisms to maintain
system-wide multiprocessor cache coherency.

This chapter describes the System interface from the point of view of both
the processor and the external agent.

MIPS R4000 Microprocessor User's Manual 293

Chapter 12

12.1 Terminology

The following terms are used in this chapter;

= Anexternal agent is any logic device connected to the processor,
over the System interface, that allows the processor to issue
requests.

= A system event is an event that occurs within the processor and
requires access to external system resources.

= Sequence refers to the precise series of requests that a processor
generates to service a system event.

= Protocol refers to the cycle-by-cycle signal transitions that occur
on the System interface pins to assert a processor or external
request.

= Syntax refers to the precise definition of bit patterns on
encoded buses, such as the command bus.

12.2 System Interface Description

The R4000 processor supports a 64-bit address/data interface that can
construct systems ranging from a simple uniprocessor with main memory
to a multiprocessor system with caches and complete cache coherency.
The System interface consists of:

e 64-bit address and data bus, SysAD
= 8-bit SysAD check bus, SysADC
e 9-bit command bus, SysCmd
= eight handshake signals:
- RdRdy*, WrRdy*
- ExtRqgst*, Release*
- ValidIn*, ValidOut*
- IlvdAck*, IvdErr*
The processor uses the System interface to access external resources such

as cache misses and uncached operations. In the case of R4000MC, the
System interface also supports multiprocessor cache coherency.

294 MIPS R4000 Microprocessor User's Manual

System Interface

Interface Buses

Figure 12-1 shows the primary communication paths for the System
interface: a 64-bit address and data bus, SysAD(63:0), and a 9-bit
command bus, SysCmd(8:0). These SysAD and the SysCmd buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request (see
Processor and External Requests, in this chapter, for more information).

A request through the System interface consists of:

e an address

= aSystem interface command that specifies the precise nature of
the request

= aseries of data elements if the request is for a write, read
response, or update.

External Agent

SysAD(63:0)

\j

SysCmd(8:0)

Figure 12-1 System Interface Buses

MIPS R4000 Microprocessor User's Manual 295

Chapter 12

Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called address
cycles. Cycles in which the SysAD bus contains valid data are called data
cycles. Validity is determined by the state of the ValidIn* and ValidOut*
signals (described in Interface Buses, in this chapter).

The SysCmd bus identifies the contents of the SysAD bus during any
cycle in which it is valid. The most significant bit of the SysCmd bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle.

= During address cycles [SysCmd(8) = 0], the remainder of the
SysCmd bus, SysCmd(7:0), contains a System interface command
(the encoding of System interface commands is detailed in
System Interface Commands and Data Identifiers, in this
chapter).

= During data cycles [SysCmd(8) = 1], the remainder of the
SysCmd bus, SysCmd(7:0), contains a data identifier (the
encoding of data identifiers is detailed in System Interface
Commands and Data ldentifiers, in this chapter).

Issue Cycles

There are two types of processor issue cycles:
e processor read, invalidate, and update request issue cycles
e processor write request issue cycles.

The processor samples the signal RARdy* to determine the issue cycle for
a processor read, invalidate, or update request; the processor samples the
signal WrRdy* to determine the issue cycle of a processor write request.

As shown in Figure 12-2, RARdy* must be asserted two cycles prior to the
address cycle of the processor read/invalidate/update request to define
the address cycle as the issue cycle.

scyde |l 12 a4 s]6]
scock |\ N\
SysAD Bus | X Addr X

RdRdy* | \

Figure 12-2 State of RdRdy* Signal for Read, Invalidate, or Update Requests

296

MIPS R4000 Microprocessor User's Manual

System Interface

As shown in Figure 12-3, WrRdy* must be asserted two cycles prior to the
first address cycle of the processor write request to define the address
cycle as the issue cycle.

scyde ([1|2]3] als]|o6]|
scock |\ S\
SysAD Bus | X Addr X

WrRdy* | \

Figure 12-3 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request until the conditions
for a valid issue cycle are met. After the issue cycle, if the processor
request requires data to be sent, the data transmission begins. There is
only one issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue a
processor request, by releasing the System interface to slave state in
response to an assertion of ExtRgst* by the external agent.

Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes. The processor
either:

= completes the issuance of the processor request in its entirety
before the external request is accepted, or

= releases the System interface to slave state without completing
the issuance of the processor request.

In the latter case, the processor issues the processor request (provided the
processor request is still necessary) after the external request is complete.
The rules governing an issue cycle again apply to the processor request.

MIPS R4000 Microprocessor User's Manual 297

Chapter 12

Handshake Signals

The processor manages the flow of requests through the following eight
control signals:

RdRdy*, WrRdy* are used by the external agent to indicate
when it can accept a new read (RdRdy*) or write (WrRdy*)
transaction.

ExtRqgst*, Release* are used to transfer control of the SysAD
and SysCmd buses. ExtRqgst* is used by an external agent to
indicate a need to control the interface. Release* is asserted by
the processor when it transfers the mastership of the System
interface to the external agent.

The R4000 processor uses ValidOut* and the external agent
uses ValidIn* to indicate valid command/data on the
SysCmd/SysAD buses.

IvdAck*, IvdErr* are used in multiprocessor systems; they are
asserted by the external agent to indicate the successful
completion (IvdAck?*) or the unsuccessful completion (IvdErr*)
of a pending processor invalidate or update request.Jr

t When using the R4000SC processor, IvdAck* and IvdErr* must be connected to Vcc.

298

MIPS R4000 Microprocessor User's Manual

System Interface

12.3 System Interface Protocols

Figure 12-4 shows the System interface operates from register to register.
That is, processor outputs come directly from output registers and begin
to change with the rising edge of SClock."

Processor inputs are fed directly to input registers that latch these input
signals with the rising edge of SClock. This allows the System interface to
run at the highest possible clock frequency.

R4000
Output data
— »
D EEEEE—
Input data
- -
SClock

Figure 12-4 System Interface Register-to-Register Operation

Master and Slave States

When the R4000 processor is driving the SysAD and SysCmd buses, the
System interface is in master state. When the external agent is driving the
SysAD and SysCmd buses, the System interface is in slave state.

In master state, the processor asserts the signal VValidOut* whenever the
SysAD and SysCmd buses are valid.

In slave state, the external agent asserts the signal VValidIn* whenever the
SysAD and SysCmd buses are valid.

t SClock is an internal clock used by the processor to sample data at the System interface
and to clock data into the processor System interface output registers; see Chapter 10 for
more details.

MIPS R4000 Microprocessor User's Manual 299

Chapter 12

Moving from Master to Slave State

The System interface remains in master state unless one of the following
occurs:

= The external agent requests and is granted the System interface
(external arbitration).

= The processor issues a read request or completes the issue of a
cluster (uncompelled change to slave state).

External Arbitration

The System interface must be in slave state for the external agent to issue
an external request through the System interface. The transition from
master state to slave state is arbitrated by the processor using the System
interface handshake signals ExtRgst* and Release*. This transition is
described by the following procedure:

1. Anexternal agent signals that it wishes to issue an external request by
asserting ExtRgst*.

2. When the processor is ready to accept an external request, it releases
the System interface from master to slave state by asserting Release*
for one cycle.

3. The System interface returns to master state as soon as the issue of the
external request is complete.

This process is described in External Arbitration Protocol, later in this
chapter.

300

MIPS R4000 Microprocessor User's Manual

System Interface

Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the System
interface from master state to slave state, initiated by the processor when
a processor read request is pending. Release* is asserted automatically
after a read request or cluster (see Clusters, later in this chapter, for a
definition of a cluster). An uncompelled change to slave state occurs either
during or some number of cycles after the issue cycle of a read request, or
either during or some number of cycles after the last cycle of the last
request in a cluster.

The uncompelled release latency depends on the state of the cache, the
presence or absence of a secondary cache, and the secondary cache
parameters (see Release Latency, in this chapter). After an uncompelled
change to slave state, the processor returns to master state at the end of the
next external request. This can be a read response, or some other type of
external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus. As long as the System interface is in slave state, the
external agent can begin an external request without arbitrating for the
System interface; that is, without asserting ExtRqgst*.

After the external request, the System interface returns to master state.

Whenever a processor read request is pending, after the issue of a read
request or after the issue of all of the requests in a cluster, the processor
automatically switches the System interface to slave state, even though the
external agent is not arbitrating to issue an external request. This
transition to slave state allows the external agent to return read response
data.

MIPS R4000 Microprocessor User's Manual 301

Chapter 12

12.4 Processor and External Requests

There are two broad categories of requests: processor requests and external
requests. These two categories are described in this section.

When a system event occurs, the processor issues either a single request or
a series of requests—called processor requests—through the System
interface, to access an external resource and service the event. For this to
work, the processor System interface must be connected to an external
agent that is compatible with the System interface protocol, and can
coordinate access to system resources.

An external agent requesting access to processor caches or to a processor
status register generates an external request. This access request passes
through the System interface. System events and request cycles are shown
in Figure 12-5.

R4000 External Agent
—
Processor Requests
¢ Read
e Write External Requests
e Null write ¢ Read
* Invalidate o Write
« Update o Null
« Invalidate
« Update
¢ Snoop

Intervention

M s)stem Events
e Load Miss
Store Miss
Store Hit
Uncached Load/Store
CACHE operations

Figure 12-5 Requests and System Events

302

MIPS R4000 Microprocessor User's Manual

System Interface

Rules for Processor Requests

The following rules apply to processor requests.

= After issuing a processor read request, either individually or as
part of a cluster, the processor cannot issue a subsequent read
request until it has received a read response.

= After issuing a processor update request, or after a potential
update request becomes compulsory, the processor cannot
issue a subsequent request until it has received an
acknowledge for the update request.

= After the processor has issued a write request, the processor
cannot issue a subsequent request until at least four cycles after
the issue cycle of the write request. This means back-to-back
write requests with a single data cycle are separated by two
unused system cycles, as shown in Figure 12-6.

scye [1]2 s]als|e]7]e]e]
SClock I__/__/__/__/__/__/__/__/__/__/
Cycles 1 2 3
SysAD Bus | X XAddr X Data XUnusedXUnusedX Addr X Data X
~ .
Write #1 Write #2
WrRdy* |\

Figure 12-6 Back-to-Back Write Cycle Timing

MIPS R4000 Microprocessor User's Manual 303

Chapter 12

Processor Requests

A processor request is a request or a series of requests, through the System
interface, to access some external resource. As shown in Figure 12-7,
processor requests include read, write, null write, invalidate, and update.
This section also describes clusters.

R4000 External Agent

Processor Requests
Read
Write

Null write
Invalidate
Update

Figure 12-7 Processor Requests

Read request asks for a block, doubleword, partial doubleword, word, or
partial word of data either from main memory or from another system
resource.

Write request provides a block, doubleword, partial doubleword, word, or
partial word of data to be written either to main memory or to another
system resource.

Null write request indicates that an expected write has been cancelled as a
result of an external request.

Invalidate request specifies a line in every other cache in the system that
must be marked invalid.

Update request provides a block, doubleword, partial doubleword, word,
or partial word of data that must be transferred to every other cache in the
system.

Table 12-1 lists the processor requests that each type of R4000 can issue.

Table 12-1 Supported Processor Requests

Request R4000PC | R4000SC R4000MC
Processor Read X X X
Processor Write X X X
Processor Null Write X X
Processor Invalidate X
Processor Update X

304

MIPS R4000 Microprocessor User's Manual

System Interface

Processor requests are managed by the processor in two distinct modes:
secondary-cache mode and no-secondary-cache mode (see Chapter 11 for a
description of these two modes), which are programmable through the
boot-time mode control interface described in Chapter 9.

The permissible modes of operation are dependent on the following
processor package configurations; if not programmed correctly, the
behavior of the processor is undefined.

< An R4000PC must be programmed to run in no-secondary-
cache mode.

< An R4000SC or R4000MC can be programmed to run in either
secondary-cache or no-secondary-cache mode.

In no-secondary-cache mode, the processor issues requests in a strict
sequential fashion; that is, the processor is only allowed to have one
request pending at any time. For example, the processor issues a read
request and waits for a read response before issuing any subsequent
requests. The processor submits a write request only if there are no read
requests pending.

The processor has the input signals RARdy* and WrRdy* to allow an
external agent to manage the flow of processor requests. RARdy* controls
the flow of processor read, invalidate, and update requests, while WrRdy*
controls the flow of processor write requests. Processor null write requests
must always be accepted and cannot be delayed by either RARdy* or
WrRdy*. The processor request cycle sequence is shown in Figure 12-8.

R4000 External Agent

1. Processor issues read, write,

invalidate, or update request >

2. External system controls
acceptance of requests by
asserting RdRdy* or WrRdy*

Figure 12-8 Processor Request

MIPS R4000 Microprocessor User's Manual 305

Chapter 12

Processor Read Request

When a processor issues a read request, the external agent must access the
specified resource and return the requested data. (Processor read requests
are described in this section; external read requests are described in
External Requests, later on in this chapter.)

A processor read request can be split from the external agent’s return of
the requested data; in other words, the external agent can initiate an
unrelated external request before it returns the response data for a
processor read. A processor read request is completed after the last word
of response data has been received from the external agent.

Note that the data identifier (see System Interface Commands and Data
Identifiers, in this chapter) associated with the response data can signal
that the returned data is erroneous, causing the processor to take a bus

error.

Processor read requests that have been issued, but for which data has not
yet been returned, are said to be pending. A read remains pending until the
requested read data is returned.

In secondary-cache mode, the external agent must be capable of accepting
a processor read request followed by a potential update request any time
all three of the following conditions are met:

= There is no processor read request pending.
= There is no unacknowledged processor update request.
= The signal RdARdy* has been asserted for two or more cycles.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor read request any time the following two conditions
are met;

= There is no processor read request pending.
« The signal RdRdy* has been asserted for two or more cycles.

306 MIPS R4000 Microprocessor User's Manual

System Interface

Processor Write Request

When a processor issues a write request, the specified resource is accessed
and the datais written to it. (Processor write requests are described in this
section; external write requests are described in External Requests, later on
in this chapter.)

A processor write request is complete after the last word of data has been
transmitted to the external agent.

In secondary-cache mode, the external agent must be capable of accepting
a processor write request any time all three of the following conditions are
met:

= There is no processor read request pending.

= There is no unacknowledged processor update request that is
compulsory.

= The signal WrRdy* has been asserted for two or more cycles.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor write request any time the following two conditions
are met:

= No processor read request is pending.
« The signal WrRdy* has been asserted for two or more cycles.

MIPS R4000 Microprocessor User's Manual 307

Chapter 12

Processor Invalidate Request

An invalidate request notifies all processors that the specified cache line
must be marked invalid in all caches in the system. Invalidate requests can
only be used in a multiprocessing system.

When a processor issues an invalidate request, the specified resource is
accessed and the line is marked invalid. (Processor invalidate requests are
described in this section; external invalidate requests are described in
External Requests, later on in this chapter.)

A processor invalidate request requires a completion acknowledge by
either the invalidate acknowledge signal IvdAck* or the invalidate error
signal IvdErr*, unless the invalidate is canceled by the external agent. A
processor invalidate request that has been submitted, but for which the
processor has not yet received an acknowledge or a cancellation, is said to
be unacknowledged. When the processor invalidate request fails (IvdErr* is
asserted), the issuing processor takes a bus error on the store instruction
that generated the failed request. Figure 12-10 shows a sample processor
invalidate/update request cycle.

Invalidate cancellation is signaled to the processor during external
invalidate, update, snoop, and intervention requests; IvdErr* signals a
processor invalidate request has failed.

A completion acknowledge for processor invalidate requests is signaled
through the System interface on dedicated pins, and this acknowledgment
can occur in parallel with processor and external requests.

State changes in the external system are not instantaneously reflected in
the caches of every processor, which means an external agent can discover
that a processor request for an invalidate cannot be completed. For
example, a processor store can hit on a shared cache line and issue an
invalidate to the external agent. However, before the external agent can
transmit the invalidate to the rest of the system another invalidate for the
same cache line can be received by the external agent. If this occurs, the
processor cache does not reflect the current state of the system and the
processor invalidate must not be transmitted to the system; instead, the
external agent must cancel the processor unacknowledged invalidate.
Figure 12-9 shows this cancellation cycle.

308

MIPS R4000 Microprocessor User's Manual

System Interface

System bus

R4000

1. Processor issues

External Agent

invalidate request

3. External invalidate with

A

2. Invalidate arrives from
the system

-

cancellation sent to processor

4. Processor issues processor

read request

Figure 12-9 Cancelling an

The steps shown in Figure 12-9 a

A

Invalidate Request

re described below:

ming from the system bus, is received by

1. The processor issues an invalidate on a store hit to a shared line in
its cache.

2. Aninvalidate request, co
the processor’s external agent targeting the same cache line.

3. The external invalidate invalidates the cache line, and the
processor invalidate request is cancelled.

4. The processor re-examin

es the state of the cache line and

discovers the cache line which was target of the store is now
invalid. The processor issues a processor read request to service

the store miss.

MIPS R4000 Microprocessor User's Manual

309

Chapter 12

Processor Update Request

An update request notifies all processors that a specified cache line in all
caches throughout a multiprocessor system must be replaced with
modified data. An update request can only be used in a multiprocessing
system.

When a processor issues an update request, the specified resource is
accessed and the line is updated. (Processor update requests are described
in this section; external update requests are described in External
Requests, later on in this chapter.)

A processor update request requires a completion acknowledge by either
the invalidate acknowledge signal IvdAck* or the invalidate error signal
IvdErr* (shown in Figure 12-10), unless the update is canceled by the
external agent. A processor update request that has been submitted, but
for which the processor has not yet received an acknowledge or a
cancellation, is said to be unacknowledged. When the processor update
request fails (IvdErr* is asserted), the issuing processor takes a bus error
on the store instruction that generated the failed request. Figure 12-10
shows a sample processor invalidate/update request cycle.

System bus

R4000

1. Processor Update or

External Agent External Agent R4000

Invalidate Request

»

3. External Update
or Invalidate
Request

5. IvdAck* or IvdErr*

Figure 12-10 Processor Update/Invalidate Acknowledge Cycle

Update cancellation is signaled to the processor during external
invalidate, update, snoop, and intervention requests; IvdErr* signals a
processor update request has failed.

Since a completion acknowledge for processor update requests is signaled
through the System interface on dedicated pins, this acknowledgment can
occur in parallel with processor and external requests.

310

MIPS R4000 Microprocessor User's Manual

System Interface

Clusters

A cluster consists of a single processor read request, followed by one or
two additional processor requests that are issued while the initial read
request is pending.

The processor supports three types of clusters:
= a processor read request, followed by a write request
= a processor read request, followed by potential update request

= a processor read request, followed by a potential update
request, followed by a write request.

In secondary-cache mode, the processor issues individual requests (as in
no-secondary-cache mode), or cluster requests. All requests in the cluster
must be accepted before the response to the read request that began the
cluster can be returned to the processor.

Potential update requests within a cluster can be disabled through the
boot-time mode control interface.

Read With Write Forthcoming Request as Part of a Cluster

The processor signals that it is issuing a cluster containing a processor
write request by issuing a read-with-write-forthcoming request, instead of
starting the cluster with an ordinary read request. The read-with-write-
forthcoming request is identified by a bit in the command for processor
read requests.

The external agent must accept all requests that form the cluster before it
can respond to the read request that began the cluster. The behavior of the
processor is undefined if the external agent returns a response to a
processor read request before accepting all of the requests of the cluster.

Potential Update as Part of a Cluster

Potential updates are identified by setting a bit in the processor update
command. A processor potential update request is any update request
that is issued while a processor read request is pending.

Once the processor issues a read request, a potential update request
follows, regardless of the state of RARdy*. Potential update requests do
not obey the RARdy* flow control rules for issuance, but rather issue with
a single address cycle regardless of the state of RARdy*.

MIPS R4000 Microprocessor User's Manual 311

Chapter 12

A processor potential update request remains potential until the read
response to the pending processor read request which began the cluster is
received by the external agent.

= If the read response data is returned in one of the shared
states—shared or dirty shared—the potential update becomes
compulsory and is no longer potential. A compulsory update
must receive an acknowledge either by the signal IvdAck* or
IvdErr*,

= |If the read response data is returned in one of the exclusive
states—clean exclusive or dirty exclusive—the potential update is
nullified and the processor neither expects nor requires an
acknowledge.

Write Request as Part of a Cluster

A write request that is part of a cluster obeys the WrRdy* timing rules for
issuing, as shown earlier in Figure 12-3.

Null Write Request as Part of a Cluster

Since the processor accepts external requests between the issue of a read-
with-write-forthcoming request that begins a cluster and the issue of the
write request that completes a cluster, it is possible for an external request
to eliminate the need for the write request in the cluster. For example, if
the external agent issued an external invalidate request that targeted the
cache line the processor was attempting to write back, the state of the
cache line would be changed to invalid and the write back for the cache
line would no longer be needed. In this event, the processor issues a
processor null write request after completing the external request to
complete the cluster.

Processor null write requests do not obey the WrRdy* flow control rules
for issuance, rather they issue with a single address cycle regardless of the
state of WrRdy*. Any external request that changes the state of a cache
line from dirty exclusive or dirty shared to clean exclusive, shared, or
invalid obviates the need for a write back of that cache line.

312 MIPS R4000 Microprocessor User's Manual

System Interface

External Requests

External requests include read, write, invalidate, update, shoop,
intervention, and null requests, as shown in Figure 12-11. External
invalidate, update, snoop and intervention requests, as a group, are
referred to as external coherence requests. This section also includes a
description of read response, a special case of an external request.

R4000 External Agent

External Requests
Read

Write

Null
Invalidate
Update
Snoop
Intervention

Figure 12-11 External Requests

Read request asks for aword of data from the processor’s internal resource.

Write request provides a word of data to be written to the processor’s
internal resource.

Invalidate request specifies a cache line, in the primary and secondary
caches of the processor, that must be marked invalid.

Update request provides a doubleword, partial doubleword, word, or
partial word of data to be written to the processor’s primary and
secondary caches.

Snoop request checks the processor’s secondary cache to see if a valid copy
of a particular cache line exists. Ifavalid copy exists, the processor returns
the state of the cache line at the specified physical address in the secondary
cache, and can modify the state of the cache line.

Intervention request requires the processor to return the state of the
secondary cache line at the specified physical address. Under certain
conditions related to the state of the cache line and the nature of the
intervention request, the contents of the primary and secondary cache line
can be returned. The state of the line can also be modified by this request.

MIPS R4000 Microprocessor User's Manual 313

Chapter 12

Null request requires no action by the processor; it provides a mechanism
for the external agent to either return control of the secondary cache to the
processor, or return the System interface to the master state without
affecting the processor.

Table 12-2 lists the external requests that each type of R4000 can receive
(an X indicates the request is supported on that model).

Table 12-2 Supported External Requests

Request Type R4000PC R4000SC R4000MC
External Read X X X
External Write X X X
E)Egi/rsqzlrnl\lilrjli:arface) X X X
External Null X

(Secondary Cache)

External Invalidate

External Update

External Snoop

X | X| X| X| X

External Intervention

The processor controls the flow of external requests through the
arbitration signals ExtRqgst* and Release*, as shown in Figure 12-12. The
external agent must acquire mastership of the System interface before it is
allowed to issue an external request; the external agent arbitrates for
mastership of the System interface by asserting ExtRgst* and then waiting
for the processor to assert Release* for one cycle.

R4000 External Agent

| 1. External system requests bus
mastership by asserting ExtRgst*

2. Processor grants mastership by
asserting Release* >

3. External system issues an
External Request

4. Processor regains bus mastership

Figure 12-12 External Request

314 MIPS R4000 Microprocessor User's Manual

System Interface

Mastership of the System interface always returns to the processor after an
external request is issued. The processor does not accept a subsequent
external request until it has completed the current request. The processor
accepts external requests between the issue of a processor read request, or
a processor read request followed by a potential update request and the
issue of a processor write request within a cluster.

If there are no processor requests pending, the processor decides, based on
its internal state, whether to accept the external request, or to issue a new
processor request. The processor can issue a new processor request even if
the external agent is requesting access to the System interface.

The external agent asserts ExtRgst* indicating that it wishes to begin an
external request. The external agent then waits for the processor to signal
that it is ready to accept this request by asserting Release*. The processor
signals that it is ready to accept an external request based on the criteria
listed below.

= The processor completes any processor request or processor
request cluster that is in progress.

= While waiting for the assertion of RARdy* to issue a processor
read request, the processor can accept an external request if the
request is delivered to the processor one or more cycles before
RdRdy* is asserted.

= While waiting for the assertion of WrRdy* to issue a processor
write request, the processor can accept an external request
provided the request is delivered to the processor one or more
cycles before WrRdy* is asserted.

= |If waiting for the response to a read request after the processor
has made an uncompelled change to a slave state, the external
agent can issue an external request before providing the read
response data.

MIPS R4000 Microprocessor User's Manual 315

Chapter 12

External Read Request

In contrast to a processor read request, data is returned directly in
response to an external read request; no other requests can be issued until
the processor returns the requested data. An external read request is
complete after the processor returns the requested word of data.

The data identifier (see System Interface Commands and Data Identifiers
in this chapter) associated with the response data can signal that the
returned data is erroneous, causing the processor to take a bus error.

NOTE: The processor does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set.

External Write Request

When an external agent issues a write request, the specified resource is
accessed and the data is written to it. Anexternal write request iscomplete
after the word of data has been transmitted to the processor.

The only processor resource available to an external write request is the
Interrupt register.
External Invalidate Request

When an external agent issues an invalidate request, the specified resource
is accessed and the line is marked invalid. An external invalidate request
is considered to be complete after the request has been transmitted.

External Update Request

When an external agent issues an update request, the specified resource is
accessed and the line is replaced. An external update request is
considered complete after the request has been transmitted.

316 MIPS R4000 Microprocessor User's Manual

System Interface

External Snoop Request

An external snoop request makes the processor inspect the secondary
cache to see if the cache contains a valid version of the specified cache line.
If the valid cache line is present, the processor reports the cache line state
and can modify this state.

An external snoop request is complete after the processor returns the state
of the specified cache line.

External Intervention Request

When an external agent issues an intervention request, the specified
secondary cache line is inspected. Upon inspection, the cache line state is
reported and/or modified. Under certain circumstances the specified
cache line may also be retrieved. The external intervention request is
complete after one of the following occurs:

= the processor returns the state of the specified cache line

= the processor returns the last word of data for the specified
cache line.

Read Response

A read response returns data in response to a processor read request, as
shown in Figure 12-13. While a read response is technically an external
request, it has one characteristic that differentiates it from all other
external requests—it does not perform System interface arbitration. For
this reason, read responses are handled separately from all other external
requests, and are simply called read responses.

R4000 External Agent

1. Read request

2. Read response

Figure 12-13 Read Response

MIPS R4000 Microprocessor User's Manual 317

Chapter 12

12.5 Handling Requests

This section details the sequence, protocol, and syntax (See Terminology, in
this chapter, for definitions of these terms) of both processor and external
requests. The following system events are discussed:

Load Miss

load miss in secondary-cache mode and no-secondary-cache
mode

store miss in secondary-cache mode and no-secondary-cache
mode

store hit

uncached loads/stores
CACHE operations

load linked store conditional.

When a processor load misses in both the primary and secondary caches,
before the processor can proceed it must obtain the cache line that contains
the data element to be loaded from the external agent.

If the new cache line replaces a current dirty exclusive or dirty shared
cache line, the current cache line must be written back before the new line
can be loaded in the primary and secondary caches.

The processor examines the coherency attribute (cache coherency
attributes are described in Chapter 11) in the TLB entry for the page that
contains the requested cache line, and executes one of the following
requests:

If the coherency attribute is exclusive, the processor issues a
coherent read request that also requests exclusivity.

If the coherency attribute is sharable or update, the processor
issues a coherent read request.

If the coherency attribute is noncoherent, the processor issues a
noncoherent read request.

Table 12-3 shows the actions taken on a load miss to primary and
secondary caches.

318

MIPS R4000 Microprocessor User's Manual

System Interface

Table 12-3 Load Miss to Primary and Secondary Caches

State of Data Cache Line Being Replaced
Page Attribute Processor No-Secondary-Cache
(Write-back policy) | Configuration Mode Secondary-Cache Mode
Clean/Invalid Dirty | Clean/Invalid Dirty
Noncoherent All R4000 NCR NCR/W NCR NCR-W
models
Exclusive
. R4000SC
_(read_and write RA00OMC N/A N/A REex Rey-W
invalidate)
Shareable R4000MC N/A N/A R R-W
(write invalidate)
Update RA000MC N/A N/A R R-W
(write update)
NCR....ccooeee Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor block write
request
NCR-W Cluster: Processor noncoherent block read request with write forthcoming
followed by processor block write request
S Processor coherent block read request
R-W . Cluster: Processor coherent block read request with write forthcoming followed
by processor block write request
REy eeererreenreennns Processor coherent block read request with exclusivity
Rex Wi, Cluster: Processor coherent block read request with exclusivity and write

forthcoming followed by processor block write request

MIPS R4000 Microprocessor User's Manual 319

Chapter 12

Secondary-Cache Mode

In secondary-cache mode, if the current cache line does not have to be
written back and the coherency attribute for the page that contains the
requested cache line is not exclusive, the processor issues a coherent block
read request for the cache line that contains the data element to be loaded.

If the current cache line needs to be written back and the coherency
attribute for the requested cache line is sharable or update, the processor
issues a cluster. The cluster consists of a coherent block read-with-write-
forthcoming request for the cache line that contains the data element to be
loaded, followed by a block write request for the current cache line.

If the current cache needs to be written back and the coherency attribute
for the page containing the requested cache line is exclusive, the processor
issues a cluster consisting of an exclusive read-with-write-forthcoming
request, followed by a write request for the current cache line.

Table 12-3 lists these actions.

No-Secondary-Cache Mode

In no-secondary-cache mode, if the cache line must be written back on a
load miss, the read request is issued and completed before the write
request is handled. The processor takes the following steps:

1. The processor issues a noncoherent read requestJr for the cache line
that contains the data element to be loaded.

2. The processor then waits for an external agent to provide the read
response.

If the current cache line must be written back, the processor issues a write
request to save the dirty cache line in memory.

T Only noncoherent and uncached attributes are supported in no-secondary-cache mode.

320 MIPS R4000 Microprocessor User's Manual

System Interface

Store Miss

When a processor store misses in both the primary and secondary caches,
the processor must obtain, from the external agent, the cache line that
contains the target location of the store. The processor examines the
coherency attribute in the TLB entry for the page (TLB page coherency
attributes are listed in Chapter 4) that contains the requested cache line to
see if the cache line is being maintained with either a write invalidate or a
write update cache coherency protocol.

The processor then executes one of the following requests:

= If the coherency attribute is either sharable or exclusive, a write
invalidate protocol is in effect, and a coherent block read that
requests exclusivity is issued.

= If the coherency attribute is update, a write update protocol is in
effect and a coherent block read request is issued.

= If the coherency attribute is noncoherent, a noncoherent block
read request is issued.

Table 12-4 shows the actions taken on a store miss to primary and
secondary caches.

MIPS R4000 Microprocessor User's Manual 321

Chapter 12

Table 12-4 Store Miss to Primary and Secondary Caches

State of Data Cache Line Being Replaced
Page Attribute No-Secondary- :
(Write-back Prqcesso_r Cache Mode Secondary-Cache Mode
Poli Configuration
olicy) Clean/ | .. Clean/ Dirt
Invalid Y Invalid Y
Noncoherent All R4000 NCR NCR/ NCR NCR-W
models W
Exclusive
. R4000SC
_(wrlt(_a RA00OMC N/A N/A REx Re-W
invalidate)
Shareable
(write R4000MC N/A N/A REex Rex-W
invalidate)
Update Dis) | En@ | Dis® En®@
(write update) R4000MC N/A N/A R/U | R-PU | R-W/U | R-PU-W

NCR ..o Processor noncoherent block read request

NCR/W............. Processor noncoherent block read request followed by processor block
write request

NCR-W.............. Cluster: Processor noncoherent block read request with write forthcoming
followed by processor block write request

RExeeerereerenranens Processor coherent block read request with exclusivity

RExW oo, Cluster: Processor coherent block read request with exclusivity and write
forthcoming followed by processor block write request

R/ZU. ..o Processor coherent block read request followed by processor update
request (if read response data is shared or dirty shared)

R-PUcccoene Cluster: Processor coherent block read request followed by processor
potential update request

R-PU-W Cluster: Processor coherent block read request followed by processor
potential update request, followed by processor block write request

R-W/U Cluster: Processor coherent block read request with write forthcoming
followed by processor block write request, followed by processor update
request (if read response data is shared or dirty shared)

Dis® ... Potential update disable [Modebit(20): PotUpdDis = 1]

EN@ . Potential update enable [Modebit(20): PotUpdDis = 0]

322 MIPS R4000 Microprocessor User's Manual

System Interface

Secondary-Cache Mode

In secondary-cache mode, if the new cache line replaces a current cache
line that is in either the dirty exclusive or dirty shared state, the current
cache line must be written back before the new line can be loaded in the
primary and secondary caches. The processor requests issued are a
function of the page attributes listed below.

Noncoherent Page Attribute

If the current cache line must be written back, and the coherency attribute
for the requested cache line is noncoherent, the processor issues a cluster
consisting of a noncoherent block read-with-write-forthcoming request
for the cache line that contains the store target location, followed by a
block write request for the current cache line.

If the current cache line does not need to be written back and the
coherency attribute for the page that contains the requested cache line is
noncoherent, the processor issues a noncoherent block read request for the
cache line that contains the store target location.

Sharable or Exclusive Page Attribute

If the current cache line must be written back and the coherency attribute
for the page that contains the requested cache line is sharable or exclusive,
the processor issues a cluster consisting of a coherent block read request
with exclusivity and write forthcoming, followed by a processor block
write request for the current cache line.

If the current cache line does not need to be written back and the coherency
attribute for the page that contains the requested cache line is sharable or
exclusive, the processor issues a coherent block read request that also
requests exclusivity.

Update Page Attribute

If the current cache line must be written back and the coherency attribute
for the page that contains the requested cache line is update, and potential
updates are enabled, the processor issues a cluster consisting of a coherent
block read-with-write-forthcoming request, followed by a potential
update request, followed by a write request for the current cache line.

MIPS R4000 Microprocessor User's Manual 323

Chapter 12

If the current cache line does not need to be written back, the coherency
attribute for the page that contains the requested cache line is update, and
potential updates are enabled, the processor issues a cluster consisting of
a read request, followed by a potential update request.

In an update protocol, the cache line requested by a processor coherent
read request can be returned in a shared state; the processor then has to
issue an update request before it can complete a store instruction. A
potential update issued with a read request in a cluster allows the external
agent to anticipate the read response on the system bus. If the read
response is in a shared state, the required update is quickly transmitted to
the rest of the system. This provides the processor with the acknowledge
and allows the processor to complete the store instruction as rapidly as
possible.

Without the potential update request, the response data must be returned
to the processor. If the line is returned in the shared or dirty shared state,
the processor issues an update request, which must then be forwarded to
the system bus before an acknowledge can be returned to the processor.

Note that potential updates behave as if they have not yet been issued by
the processor. Potential updates are not subject to cancellation, and do not
require an acknowledge. When a potential update is nullified, the
processor behaves as if no update request was ever issued; when a
potential update becomes compulsory, the processor behaves as if it had
issued an update request at that instant.

Compulsory Update: If the processor issues a cluster that contains a
potential update, and the response data for the read request is
returned with an indication that it must be placed in the cache in either
a shared or dirty shared state, the potential update then becomes
compulsory. Once a potential update becomes compulsory, it is
subject to cancellation, and the processor requires an acknowledge for
the update request. The external agent must forward the update to the
system, then signal the acknowledge to the processor when the update
is complete. The processor will not complete the store until it has
received an acknowledge for the update request.

324

MIPS R4000 Microprocessor User's Manual

System Interface

Nullifying a Potential Update: If the processor issues a cluster that
contains a potential update, and the response data for the read request
is returned in either a clean exclusive or dirty exclusive state, the
potential update is nullified. Once a potential update has been
nullified, the external agent must discard the update. The processor
does not wait for or expect an acknowledge to a potential update that
has been nullified. Itis not correct to assert either IvdAck* or IvdErr*
in this situation.

If the read response data is returned in either the clean exclusive or dirty
exclusive state, the processor cannot issue an update request. It is
assumed that the external agent will take the appropriate action to change
the state of the cache line to invalid in other caches.

An external request indicating processor update cancellation can be issued
when a processor read is not pending or when compulsory update is
unacknowledged. Processor state is undefined if a cancellation is signaled
on an external coherence request to the processor when a processor read
is pending, or there is no unacknowledged compulsory update.

No-Secondary-Cache Mode

The processor issues a read request for the cache line that contains the data
element to be loaded, then awaits the external agent to provide read data
in response to the read request. Then, if the current cache line must be

written back, the processor issues a write request for the current cache line.

In no-secondary-cache mode, if the new cache line replaces a current cache
line whose Write back (W) bit is set, the current cache line moves to an
internal write buffer before the new cache line is loaded in the primary
cache.

MIPS R4000 Microprocessor User's Manual 325

Chapter 12

Store Hit

This section describes store hits in both secondary-cache and no-
secondary-cache mode.

Secondary-Cache Mode

When the processor hits in the secondary cache, on a line that is marked
either shared or dirty shared, the processor must issue an update or
invalidate request and then wait to receive an acknowledge, before the
store is complete. The processor checks the coherency attribute in the TLB
for the page containing the cache line that is target of the store, to
determine if the cache line is managed by either a write invalidate or write
update cache coherency protocol.

= |f the coherency attribute is sharable or exclusive, a write
invalidate protocol is in effect, and the processor issues an
invalidate request. The processor cannot complete the store
until the external agent signals an acknowledge for this
invalidate request.

= |f the coherency attribute is update, a write update protocol is
in effect, and the processor issues an update request. The
processor cannot complete the store until the external agent
signals an acknowledge for this update request.

No-Secondary-Cache Mode

In no-secondary-cache mode, all lines are set to the dirty exclusive state.
This means store hits cause no bus transactions.

Uncached Loads or Stores

When the processor performs an uncached load, it issues a noncoherent
doubleword, partial doubleword, word, or partial word read request.
When the processor performs an uncached store, it issues a doubleword,
partial doubleword, word, or partial word write request.

External requests have a higher priority than uncached stores. When
using the uncached store buffer on an R4400 processor, it is possible for the
external agent to receive cached and uncached stores out of program
order, as the example below illustrates. Figure 12-14 shows a cached and
uncached store instruction sequence:

326 MIPS R4000 Microprocessor User's Manual

System Interface

SW r2, (r3) # uncached store
SW r4, (r5) # cached store

Figure 12-14 R4400 Processor Cached and Uncached Store Sequence

Referring to Figure 12-14, suppose an external intervention or snoop is
issued to the R4400 processor while the uncached store is still in the store
buffer (the uncached store data has not yet been stored off-chip). The
cached store from Figure 12-14 has hit in the primary cache and is in the
tag check (TC) stage of the pipeline (see Chapter 3 for a description of the
pipeline stages). In this case, the external agent sees the state of the
internal caches after the cached store but before the result of the uncached
store is available off the chip. Figure 12-15 shows how a SYNC instruction
can force the uncached store to occur before the cached store.

SW r2, (r3) # uncached store
SYNC
SW r4, (r5) # cached store

Figure 12-15 R4400 Processor Cached and Uncached Stores, Using SYNC

CACHE Operations

The processor provides a variety of CACHE operations to maintain the
state and contents of the primary and secondary caches. During the
execution of the CACHE operation instructions, the processor can issue
either write requests or invalidate requests.

Load Linked Store Conditional Operation

Generally, the execution of a Load Linked Store Conditional instruction
sequence is not visible at the System interface; that is, no special requests
are generated due to the execution of this instruction sequence.

There is, however, one situation in which the execution of a Load Linked
Store Conditional instruction sequence is visible, as indicated by the link
address retained bit during a processor read request, as programmed by the
SysCmd(2) bit. This situation occurs when the data location targeted by a
Load Linked Store Conditional instruction sequence maps to the same
cache line to which the instruction area containing the Load Linked Store
Conditional code sequence is mapped. In this case, immediately after
executing the Load Linked instruction, the cache line that contains the link

MIPS R4000 Microprocessor User's Manual 327

Chapter 12

location is replaced by the instruction line containing the code. The link
address is kept in a register separate from the cache, and remains active as
long as the link bit, set by the Load Linked instruction, is set.

The link bit, which is set by the load linked instruction, is cleared by a
change of cache state for the line containing the link address, or by a
Return From Exception.

In order for the Load Linked Store Conditional instruction sequence to
work correctly, all coherency traffic targeting the link address must be
visible to the processor, and the cache line containing the link location
must remain in a shared state in every cache in the system. This
guarantees that a Store Conditional executed by some other processor is
visible to the processor as a coherence request, changing the state of the
cache line containing the link location.

To accomplish this, a read request issued by the processor, causing the
cache line containing the link location to be replaced. In the mean time,
the link address retained bit is set, indicating the link address is being
retained. This informs the external agent that, although the processor has
replaced this cache line, the processor must still see any coherence traffic
that targets this cache line.

Any snoop or intervention request that targets a cache line which is not
present in the cache—but for which the snoop or intervention address
matches the current link address while the link bit is set—returns an
indication that the cache line is present in the cache in a shared state. This
is consistent with the coherency model, since the processor never returns
data, in response to an intervention request, for a cache line that is in the
shared state. The shared response guarantees that the cache line
containing the link location remains in a shared state in all other
processor’s caches, and therefore that any other processor attempting a
store conditional to this link location must issue a coherence request in
order to complete the store conditional.

For more information, refer to Chapter 11, or see the specific Load Linked
and Store Conditional instructions described in Appendix A.

328 MIPS R4000 Microprocessor User's Manual

System Interface

12.6 Processor and External Request Protocols

The following sections contain a cycle-by-cycle description of the bus
arbitration protocols for each type of processor and external request.
Table 12-5 lists the abbreviations and definitions for each of the buses that
are used in the timing diagrams that follow.

Table 12-5 System Interface Requests

Scope Abbreviation Meaning
Global Unsd Unused
Addr Physical address
SysAD bus
Data<n> Data element number n of a block of data
Cmd An unspecified System interface command
Read A processor or external read request command
RWWE A processor read-with-write-forthcoming request
command
Write A processor or external write request command
Null A processor null request command
A System interface release external null request
SINull
command
scNull A secondary cache release external null request
command
SysCmd bus | Ivd A processor or external invalidate request
command
Upd A processor or external update request command
Ivtn An external intervention request command
Snoop An external snoop request command
NData A noncoherent data identifier for a data element
other than the last data element
NEOD A noncoherent data identifier for the last data
element
A coherent data identifier for a data element other
CData
than the last data element
CEOD A coherent data identifier for the last data element

MIPS R4000 Microprocessor User's Manual 329

Chapter 12

Processor Request Protocols

Processor request protocols described in this section include:
< read
e write
= invalidate and update
< null write
= cluster

NOTE: In the timing diagrams, the two closely spaced, wavy vertical
lines (such as those shown in Figure 12-16) indicate one or more iden-
tical cycles which are not illustrated due to space constraints.

Figure 12-16 Symbol for Undocumented Cycles

Processor Read Request Protocol

The following sequence describes the protocol for a processor read request
(the numbered steps below correspond to Figures 12-17 and 12-18).

1. RdRdy* is asserted low, indicating the external agent is ready to
accept a read request.

2. With the System interface in master state, a processor read request is
issued by driving a read command on the SysCmd bus and a read
address on the SysAD bus.

3. At the same time, the processor asserts VValidOut* for one cycle,
indicating valid data is present on the SysCmd and the SysAD buses.

NOTE: Only one processor read request can be pending at a time.

4. The processor makes an uncompelled change to slave state either at
the issue cycle of the read request, or sometime after the issue cycle of
the read request by asserting the Release* signal for one cycle.

330 MIPS R4000 Microprocessor User's Manual

System Interface

NOTE: The external agent must not assert the signal ExtRqst* for the
purposes of returning a read response, but rather must wait for the un-
compelled change to slave state. The signal ExtRqgst* can be asserted
before or during a read response to perform an external request other
than a read response.

5. The processor releases the SysCmd and the SysAD buses one SCycle
after the assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within
two cycles after the assertion of Release*.

Once in slave state (starting at cycle 5 in Figure 12-17), the external agent
can return the requested data through a read response. The read response
can return the requested data or, if the requested data could not be

successfully retrieved, an indication that the returned data is erroneous. If
the returned data is erroneous, the processor takes a bus error exception.

Figure 12-17 illustrates a processor read request, coupled with an
uncompelled change to slave state, that occurs as the read request is
issued. Figure 12-18 illustrates a processor read request, and the
subsequent uncompelled change to slave state, that occurs sometime after
the read request is issued.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

~——— Master—» | -« Slave >
scyde || 1|23 |a|s|e| 7|8 |9 |w0|u]1|
SV AVAYAVAVAVAWAWAWAWAWAWN
SysAD Bus | lXAddr>@—@(
SysCmd Bus | /XRead)—(
validout | 3 \z_/

ValidIn* |

RdRdy* | Z

WrRdy* |

Release* | \@ /

Figure 12-17 Processor Read Request Protocol

MIPS R4000 Microprocessor User's Manual 331

Chapter 12

Master > |<— Slave ———»

SsCycle | 1] 2|3 |a|ls|e]7]8] 9 1]n]i]

SClock |

[
[e>)

%

SysAD Bus | XAder

SysCmd Bus | XReadX
ValidOut* | v R

ValidIn* |

RARdy* |

T N—T ~~—" — T~ "]

WrRdy* |

s/\/\/\\/\\/\/

\a_J

Figure 12-18 Processor Read Request Protocol, Change to Slave State Delayed

Release* |

When the following three events occur—a read request is pending,
ExtRgst* is asserted, and Release* is asserted for one cycle—it may be
unclear if the assertion of Release* is in response to ExtRqst*, or
represents an uncompelled change to slave state. The only situation in
which the assertion of Release* cannot be considered an uncompelled
change to slave state is if the following three conditions exist
simultaneously:

= the System interface is operating in secondary-cache mode
= the read request was a read-with-write-forthcoming request

= the expected write request has not been issued by the
processor.

If these three conditions exist, the processor cannot accept the read
response; rather, it accepts the external request. The write request must be
accepted by the external agent before the read response can be issued.

In all other cases, the assertion of Release* indicates either an
uncompelled change to slave state, or a response to the assertion of
ExtRqst*, whereupon the processor accepts either a read response, or any
other external request. If any external request other than a read response
is issued, the processor performs another uncompelled change to slave
state, asserting Release*, after processing the external request.

332 MIPS R4000 Microprocessor User's Manual

System Interface

Processor Write Request Protocol

Processor write requests are issued using one of two protocols.

< Doubleword, partial doubleword, word, or partial word writes
use a word" write request protocol.

= Block writes use a block write request protocol.
Processor doubleword write requests are issued with the System interface

in master state, as described below in the steps below; Figure 12-19 shows
a processor noncoherent single word write request cycle.

1. A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus.

The processor asserts ValidOut*.

3. The processor drives a data identifier on the SysCmd bus and data on
the SysAD bus.

4. The data identifier associated with the data cycle must contain a last
data cycle indication. At the end of the cycle, ValidOut* is deasserted.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

A

Master »
scyde || 12 s als]e| 7|8]o[w]|ul]r]
AV AVAYAYAVAVAWAWAWAWAN
SysAD Bus | 4X Addr) Data0)

SysCmd Bus | Y Write { NEODY

validout | 2 4

—

ValidIn*

|
RdRdy* |
|

WrRdy*

Release* |
Figure 12-19 Processor Noncoherent Single Word Write Request Protocol

T Called word to distinguish it from block request protocol. Data transferred can actually be
doubleword, partial doubleword, word, or partial word.

MIPS R4000 Microprocessor User's Manual 333

Chapter 12

Processor block write requests are issued with the System interface in
master state, as described below; a processor coherent block request for
eight words of data is illustrated in Figures 12-20 and 12-21.

1.

The processor issues a write command on the SysCmd bus and a write
address on the SysAD bus.

The processor asserts ValidOut*.

The processor drives a data identifier on the SysCmd bus and data on
the SysAD bus.

The processor asserts ValidOut* for a number of cycles sufficient to
transmit the block of data.

The data identifier associated with the last data cycle must contain a
last data cycle indication.

NOTE: Asshown in Figure 12-21, however, the first data cycle does
not have to immediately follow the address cycle.

Figures 12-20 and 12-21 illustrate a processor coherent block request for
eight words of data.

Master >

SCycle ||1|2|3|4|5|6|7|8|9|10|11|12|

RV AVAVAWAVEAVAVANAWAWAWAN

SysAD Bus |

X Addr XDataO X DatalX Data2 XDataS X
SysCmd Bus | 4)(write/{ CData } CData)|CData CEOD)
validout | g \2 | < E! 5; /
/
valdine | d
RdRdy* |
WrRdy* |
Release* |
Figure 12-20 Processor Coherent Block Write Request Protocol
334 MIPS R4000 Microprocessor User's Manual

System Interface

Master -

SCycle | 1] 2]3] als|e]|7]8]| 9 |10]|1]i]

SClock |
SysAD Bus |
SysCmd Bus |
validout |
Validin* |
RdRdy* |
WrRdy* |

|

Release*

DataOX Datal X Data2 X Data3 X

CData) CData | CData \CEOD

- m O

Figure 12-21 Processor Coherent Block Write Request Protocol (Delayed)

Processor Invalidate and Update Request Protocol

Processor invalidate request and update request protocols are the same as
a coherent word write request, except for the following:

= invalidate and update requests are controlled by RdRdy*,
while the write request is controlled by WrRdy*

= the single data cycle transfer is not used by an invalidate
request

Processor invalidate and update requests are acknowledged using the
signals IvdAck* and IvdErr*. The external agent drives either IvdAck* or
IvdErr* for one cycle to signal the completion of the current processor
update or invalidate request; IvdAck™* occurs in parallel with requests on
the SysAD and SysCmd buses.

IvdAck* or IvdErr* can be driven at any time after a processor update or
invalidate request is issued, provided the update request is compulsory.

MIPS R4000 Microprocessor User's Manual 335

Chapter 12

The processor pipeline stalls until one of the following occurs:

e IvdAck* or IvdErr* is asserted by the external agent. Assertion
of IvdAck* indicates a successful invalidation, and the
processor continues. IvdErr* causes a bus error exception.

= either an intervention, snoop, update, or invalidate request is
sent by the external agent, with the Invalidate or Update
Cancellation bit set, SysCmd(4) = 0, indicating the processor
invalidate or update request was cancelled.

If the processor update or invalidate request is cancelled, the instruction
that caused the processor request is re-executed. If the external request is
sent with SysCmd(4) = 1, indicating no cancellation, the processor, after
responding to the external request, stalls again until one of the two
conditions described above terminate the processor’s invalidate or update
request.

Processor Null Write Request Protocol

A processor null write request is issued with the System interface in
master state; the request consists of a single address cycle. The processor
drives a null command on the SysCmd bus and asserts ValidOut* for one
cycle. The SysAD bus is unused during the address cycle associated with
a null write request, and processor null write requests cannot be
controlled with either RARdy* or WrRdy* signals. Figure 12-22 illustrates
a processor null write request.

Master >

SCycle | 1] 2]3| a]ls|e]|7]8]|9|10]|1]1]

S VAV AVAVAVAVAVAWAWAWAWAN

SysAD Bus |
SysCmd Bus |
ValidOut* |
ValidIn*
RdRdy*
WrRdy*

Release*

XUnst

X Null

(-

Figure 12-22 Processor Null Write Request Protocol

336

MIPS R4000 Microprocessor User's Manual

System Interface

Processor Cluster Request Protocol

In secondary-cache mode, the processor can issue two types of requests:
individual and cluster.

All of the requests that are part of a cluster must be accepted by the
external agent before a response to the read request, that began the cluster,
can be returned to the processor. A cluster consists of:

« aprocessor read with write forthcoming request followed by a
write request

= aprocessor read request followed by a potential update request

= a processor read with write forthcoming request followed by a
potential update request, followed by a write request.

Figure 12-23 illustrates a cluster consisting of a read with write
forthcoming request, followed by a potential update request, followed by
a coherent block write request for eight words of data (with minimum
spacing between the requests that form the cluster), followed by an
uncompelled change to slave state at the earliest opportunity.

NOTE: Timings for the SysADC and SysCmdP buses are the same as

those of the SysAD and SysCmd buses, respectively. There may be
unused cycles between the requests that form a cluster.

- Master > |<—Slave—
scyde || 123 |a|s|e| 7|8 |9 |10]1]1)|
e VAV AVANWAVAVAVAWAWAWAWAWN
SysAD Bus |) Ador | Adr){Datao { ador | Dateo) Datat [Data2 {pata3 }——

SysCmd Bus | —WWXCEBDX Wrie | CDataj0ata | Cbata {CEOD ——
validout | @\ . i /
validine | 2 4

RARdy* | 7
WiRdy* |

Release* | \/_/

Figure 12-23 Processor Cluster Request Protocol

MIPS R4000 Microprocessor User's Manual 337

Chapter 12

Processor Request and Cluster Flow Control

The external agent uses RARdy* to control the flow of the following
processes:

* processor read request
= processor invalidate request
e processor update request

= processor read request, followed by a potential update request
within a cluster.

Figures 12-24 through 12-27 illustrate this flow control, as described in the
steps below.

1. The processor samples the signal RARdy* to determine if the external
agent is capable of accepting a read, invalidate, update request, or a
read request followed by a potential update request.

2. The signal WrRdy* controls the flow of a processor write request.

The processor does not complete the issue of a read, invalidate, update
request, or aread request followed by a potential update request, until
it issues an address cycle in response to the request for which the
signal RARdy* was asserted two cycles earlier.

4. The processor does not complete the issue of a write request until it
issues an address cycle in response to the write request for which the
signal WrRdy* was asserted two cycles earlier.

Figure 12-24 illustrates two processor write requests in which the issue of
the second is delayed for the assertion of WrRdy*.

Figure 12-25 illustrates a processor cluster in which the issue of the read
and a potential update request are delayed for the assertion of RARdy*.

Figure 12-26 illustrates a processor cluster in which the issue of the write
request is delayed for the assertion of WrRdy*.

Figure 12-27 illustrates the issue of a processor write request delayed for
the assertion of WrRdy* and the completion of an external invalidate
request.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

338 MIPS R4000 Microprocessor User's Manual

System Interface

scyce || 1] 2|3]a|ls]e|7]8|9o|w]|u]|1]
e VAV AVAYAVAVAVAWAWAVAWAR
SysAD Bus | \ Addr Y Datao) X p g) Date0)
SysCmd Bus | X write J(NEODY X Write \ J(Neop)
vaidouwr | [\ \\ [
validin® | 2

RdRdy* |

WRdy: | 2 / “ [
Release* |

Figure 12-24 Two Processor Write Requests, Second Write Delayed for the Assertion of WrRdy*

scyee || 1] 23| a|ls]|e|7]8 |9]|
VAV AVAVYAYAVAVARAWAWAVAN
sysADBus | | Addr \ addr Y atao { Addr JData0 { Datat) Data2 { Data3
SysCmd Bus | X Read X upd)cEOD), Wiite fCData {CData)CData \CEOD
validout |\ 5

validin® |

RdRdy* | \m /

WiRdy* |

Release* |

Figure 12-25 Processor Read Request within a Cluster Delayed for the Assertion of RARdy*

MIPS R4000 Microprocessor User's Manual 339

Chapter 12

SCycle ||1|2|3|4|5|6|7|8|9|10|11|12|
S VAV AVAVAVAVAVAWAWAWAWAN
SysAD Bus | Addr X Addr X Data0 X Addr » XDataO XDatalX Data2 XDataB
SysCmd Bus | Read { upd JcEoD Wiite Y cData) CData) CData | CEOD
ValidOut* |
\
Validin* | @
RdRdy* |
—
WrRdy* | \B /
Release* |

Figure 12-26 Processor Write Request within a Cluster Delayed for the Assertion of WrRdy*

sCycle | 1] 2]3] als|e]|7]8]| 9 |10]|1]i]
S AV AVAYAYAVAVAWAWAWAWAN
SysAD Bus | X Addr ——{ Addr { unsd ——{ Addr w_)Data0

SysCmd Bus | X Write ——{ wd fceoo)——{ wite YnEOD

valdour |\ / \ [
valdine | \ / a

RARdy* |
WrRdy* | 2 [
ExtRgst: |\ /
Release* | _/

Figure 12-27 Processor Write Request Delayed for the Assertion of WrRdy* and the Completion
of an External Invalidate Request

340 MIPS R4000 Microprocessor User's Manual

System Interface

External Request Protocols

External requests can only be issued with the System interface in slave
state. An external agent asserts ExtRgst* to arbitrate (see External
Arbitration Protocol, below) for the System interface, then waits for the
processor to release the System interface to slave state by asserting
Release* before the external agent issues an external request. If the System
interface is already in slave state—that is, the processor has previously
performed an uncompelled change to slave state—the external agent can
begin an external request immediately.

After issuing an external request, the external agent must return the
System interface to master state. If the external agent does not have any
additional external requests to perform, ExtRgst* must be deasserted two
cycles after the cycle in which Release* was asserted. For a string of
external requests, the ExtRqst* signal is asserted until the last request
cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted.

The processor continues to handle external requests as long as ExtRgst* is
asserted; however, the processor cannot release the System interface to
slave state for a subsequent external request until it has completed the
current request. As long as ExtRgst* is asserted, the string of external
requests is not interrupted by a processor request.

This section describes the following external request protocols:

e read
 null
e write

< invalidate and update
= intervention

= snoop

< read response

MIPS R4000 Microprocessor User's Manual 341

Chapter 12

External Arbitration Protocol

System interface arbitration uses the signals ExtRgst* and Release* as
described above. Figure 12-28 is a timing diagram of the arbitration
protocol, in which slave and master states are shown.

The arbitration cycle consists of the following steps:

1. The external agent asserts ExtRgst* when it wishes to submit an
external request.

2. The processor waits until it is ready to handle an external request,
whereupon it asserts Release* for one cycle.

The processor sets the SysAD and SysCmd buses to tri-state.

The external agent must wait at least two cycles after the assertion of

Release* before it drives the SysAD and SysCmd buses.

5. The external agent deasserts ExtRqst* two cycles after the assertion of

Release*, unless the external agent wishes to perform an additional
external request.

6. The external agent sets the SysAD and the SysCmd buses to tri-state

at the completion of an external request.

The processor can start issuing a processor request one cycle after the
external agent sets the bus to tri-state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as

those of the SysAD and SysCmd buses, respectively.

< Master =|<— Slave —>|<— Master ——»
sCycle 2 |3 |a|s|e| 7|8 |9]|10]1n]1]
SClock |j_f>
SysAD Bus /> HAddr \ Data0>—<
SysCmd Bus | \/\/ ——{cmd XNEOD)—(
Validin* \ /
ExtRqst* |w_2>\ IE
Release*

Figure 12-28 Arbitration Protocol for External Requests
342 MIPS R4000 Microprocessor User’s Manual

System Interface

External Read Request Protocol

External reads are requests for a word of data from a processor internal
resource, such as a register. External read requests cannot be split; that is,
no other request can occur between the external read request and its read
response.

Figure 12-29 shows a timing diagram of an external read request, which
consists of the following steps:

1.

An external agent asserts ExtRqst* to arbitrate for the System
interface.

The processor releases the System interface to slave state by asserting
Release* for one cycle and then deasserting Release*.

After Release* is deasserted, the SysAD and SysCmd buses are set to
a tri-state for one cycle.

The external agent drives a read request command on the SysCmd
bus and a read request address on the SysAD bus and asserts
Validln* for one cycle.

After the address and command are sent, the external agent releases
the SysCmd and SysAD buses by setting them to tri-state and
allowing the processor to drive them. The processor, having accessed
the data that is the target of the read, returns this data to the external
agent. The processor accomplishes this by driving a data identifier on
the SysCmd bus, the response data on the SysAD bus, and asserting
ValidOut* for one cycle. The data identifier indicates that this is last-
data-cycle response data.

The System interface is in master state. The processor continues
driving the SysCmd and SysAD buses after the read response is
returned.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

External read requests are only allowed to read a word of data from the
processor. The processor response to external read requests for any data
element other than a word is undefined.

MIPS R4000 Microprocessor User's Manual 343

Chapter 12

- Master =|<— Slave —>| ~— Master ——
SCycle |l 1] 23] a]ls|e]|7]8]| 9 |10]1]1]
SClock |T_/__/_>

XDataOX
4
/INeoD{ 6
Va4

5\

SysAD Bus |

)
\

SysCmd Bus |

ValidIn* |

)
)
validout | x

T N S — T~ "]

)
S
ExtRqgst* | —\ 1z <

<
§
Release* | 2 <<

Figure 12-29 External Read Request, System Interface in Master State

NOTE: The processor does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set.

External Null Request Protocol

The processor supports two kinds of external null requests.

= A secondary cache release external null request returns ownership
of the secondary cache to the processor while the System
interface remains in slave state, until another external null
request returns it to master state.

= A System interface release external null request returns the System
interface to master state from slave state without otherwise
affecting the processor.

344 MIPS R4000 Microprocessor User's Manual

System Interface

Any time the processor releases the System interface to slave state to
accept an external request, it also allows the external agent to use the
secondary cache, in anticipation of a cache coherence request. When the
external agent uses the SysAD bus for a transfer unrelated to the processor
(for example, a DMA transfer), this ownership of the secondary cache
prevents the processor from satisfying subsequent primary cache misses.
To satisfy such a primary cache miss, the external agent issues a secondary
cache release external null request, returning ownership of the secondary
cache to the processor.

External null requests require no action from the processor other than to
return the System interface to master state, or to regain ownership of the
secondary cache.

Figures 12-30 and 12-31 show timing diagrams of the two external null
request cycles, which consist of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external agent drives a secondary cache release external null
request command on the SysCmd bus, and asserts VValidIn* for one
cycle to return the secondary cache interface ownership to the
processor.

4. The SysAD bus is unused (does not contain valid data) during the
address cycle associated with an external null request.

5. After the address cycle is issued, the null request is complete.

For a secondary cache release external null request, the System interface
remains in slave state.

For a System interface release external null request, the external agent releases
the SysCmd and SysAD buses, and expects the System interface to return
to master state.

MIPS R4000 Microprocessor User's Manual 345

Chapter 12

< Master ~| < Slave >
scyde |1 2]s|a|s|e]| 7|8 |9 |1w0]1]a]
seoce | L\ S
SysAD Bus | ——{ unsd)

SysCmd Bus | >74SCNunX \

validout | 3 5

validin® | NS
ExtRgst* |—\@ /
Release* | \@_/

Figure 12-30 Secondary Cache Release External Null Request

< Slave - |<— Master »

scyde || 1|23 |a|s|e| 7|8 |9 |1w0]u]1)|
S RV AVAVAVAVAVAVAWAWAWA WA
SysAD Bus | \ Unsd ——

SysCmd Bus | 1XSINuI|)—E(
validout | 3

validin® | AN
ExtRgst |

Release* |

Figure 12-31 System Interface Release External Null Request

346 MIPS R4000 Microprocessor User's Manual

System Interface

External Write Request Protocol

External write requests use a protocol identical to the processor single
word write protocol except the ValidIn* signal is asserted instead of
ValidOut*. Figure 12-32 shows a timing diagram of an external write
request, which consists of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external agent drives a write command on the SysCmd bus, a
write address on the SysAD bus, and asserts Validln*.

4. Theexternal agent drives a data identifier on the SysCmd bus, data on
the SysAD bus, and asserts ValidIn*.

5. The data identifier associated with the data cycle must contain a
coherent or noncoherent last data cycle indication.

6. After the data cycle is issued, the write request is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state,
allowing the System interface to return to master state. Timings for
the SysADC and SysCmdP buses are the same as those of the SysAD
and SysCmd buses, respectively.

External write requests are only allowed to write a word of data to the
processor. Processor behavior in response to an external write request for
any data element other than a word is undefined.

- Master >| <« Stave —> |«— Master ——»
sCycle | 1] 2]3s|a|s]|e6]| 7|8 |9 |1w]u]i]
e VAV AVANWAVAVAVAWAWAWAWAWN
SysAD Bus | ——{ Addr) Datao ——
SysCmd Bus|) /(\WFOD)@—@(

4

validout | kf

validin® | \ 4
ExtRgst* | @ /
Release* | \2

Figure 12-32 External Write Request, with System Interface initially a Bus Master

MIPS R4000 Microprocessor User's Manual 347

Chapter 12

External Invalidate and Update Request Protocols

External invalidate and update request protocols are the same as the
external write request protocol. The data element provided with an
update or invalidate request can be a doubleword, partial doubleword,
word, or partial word. The single data cycle transfer is not used (it does
not contain valid data) for an invalidate request.

Figure 12-33 illustrates an external invalidate request following an
uncompelled change to slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Slave
- Master—>|<— Slave —>|<— Master—>| <>

scyde || 1] 2)3 |als]|e]7]8] 9 1w]1]a]

SClock |

SysAD Bus |

SysCmd Bus |

validout |

ValidIn*

|
ExtRgst* |
Release* |

Y

Figure 12-33 External Invalidate Request following an Uncompelled Change to Slave State

348 MIPS R4000 Microprocessor User's Manual

System Interface

External Intervention Request Protocol

External intervention requests use a protocol similar to that of external
read requests, except that a cache line size block of data can be returned
along with an indication of the cache state for the cache line. The cache
state indication depends upon the state of the cache line and the value of
the data return bit in the intervention request command.’

The data return bit indicates either return on dirty or return on exclusive:

= |f the data return bit indicates return on dirty, and the cache line
that is target of the intervention request is in the dirty exclusive
or dirty shared state, the contents of the cache line are returned
in response to the intervention request.

= If the data return bit indicates return on exclusive, and the cache
line that is the target of the intervention request is in the clean
exclusive or dirty exclusive state, the contents of the cache line
are returned in response to the intervention request.

If neither of the two cases above are true, the response to the intervention
request does not include the contents of the cache line, but simply indicates
the state of the cache line that is the target of the intervention request.

The case in which the processor returns a cache line state, but not cache
line contents, is described in the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external intervention request is driven onto the SysCmd bus and
the address onto the SysAD bus. Validln* is asserted for one cycle.

4. The processor drives a coherent data identifier that indicates the state
of the cache line on the SysCmd bus and asserts VValidOut* for one
cycle.

The SysAD bus is not used during the data cycle.

The data identifier indicates a response data cycle that contains a last
data cycle indication.

t If the cache line that is the target of the intervention request is not present in the cache—
that is, the tag comparison for the cache line at the target cache address fails—the cache
line that is the target of the intervention request is considered to be in the invalid state.

MIPS R4000 Microprocessor User's Manual 349

Chapter 12

Figure 12-34 shows an external intervention request to a cache line found
in the shared state, with the System interface initially in a master state.
Figure 12-35 shows an external intervention request to a cache line found
in the dirty exclusive state, with the System interface initially in a slave
state.
NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Master >|+ Slave ->|<— Master ——————»
sCycle || s |a|ls|e| 7|8 |9 |1w0]]a]
sClock 'W
SysAD Bus | >> —

SysCmd Bus| \/\/) (

validout | %g .
validin® | \ «

ExRast | \2 § / <<

|ﬂ[\w [

Figure 12-34 External Intervention Request, Shared Line, System Interface in Master State

350 MIPS R4000 Microprocessor User's Manual

System Interface

The case in which the processor returns cache line contents is described in
the steps below. In this example, the system is already in slave state.

1. The external intervention request is driven onto the SysCmd bus and
the address onto the SysAD bus. Validln* is asserted for one cycle.

2. The processor drives data on the SysAD bus and a data identifier on
the SysCmd bus. The processor asserts ValidOut™* for each data cycle.

3. The data identifier associated with the last data cycle must contain a
last data cycle indicator.

Slave
- Master —>|<—>

|
|
scyde || 1| 2]s|a|s|e]| 7|89 |w0]|n]a]

SClock |
SysAD Bus |
SysCmd Bus |
validout |
validin* |
ExtRostt |

|

Release*

—
—

Figure 12-35 External Intervention Request, Dirty Exclusive Line, System Interface in Slave State

The processor returns the contents of a cache line, along with an indication
of the cache state in which it was found, by issuing a sequence of data
cycles sufficient to transmit the contents of the cache line, as shown in
Figure 12-35. The data identifier transmitted with each data cycle
indicates the cache state in which the cache line was found, together with
an indication that this data is response data. The data identifier associated
with the last data cycle contains a last data cycle indication.

If the contents of a cache line are returned in response to an intervention
request, they are returned in subblock order starting with the doubleword
at the address supplied with the intervention request. Note, however, that
if the intervention address targets the doubleword at the beginning of the
block, subblock ordering is equivalent to sequential ordering.

MIPS R4000 Microprocessor User's Manual 351

Chapter 12

External Snoop Request Protocol

External snoop requests use a protocol identical to the external read
request protocol, except that, instead of returning data, the processor
responds with an indication of the current cache state for the targeted
cache line. This protocol is described by the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external snoop request is driven onto the SysCmd bus and the
address onto the SysAD bus. Validln* is asserted for one cycle.

4. The processor drives a coherent data identifier on the SysCmd bus
and asserts ValidOut* for one cycle.

5. The SysAD bus is unused during the snoop response.

The processor continues driving the SysCmd and SysAD buses after
the snoop response is returned, to move the System interface back to
master state.

Note that if the cache line that is the target of the snoop request is not
present in the cache—that is, a tag comparison for the cache line at the
target cache address fails—the cache line that is the target of the snoop
request is considered to be in the invalid state.

Figure 12-36 shows an external snoop request submitted with the System
interface in the master state. Figure 12-37 shows an external snoop request
submitted with the System interface in slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

352 MIPS R4000 Microprocessor User's Manual

System Interface

-« Master =|<- Slave _>|<_ Master —— »
scyde || 123 |als|e]7]8]9|1w0]1]a]
SClock |m
SysAD Bus | >>)

SysCmd Bus | \/\/) -
validout* | %

Validin* \ «

ExtRgst* | o \x % / < <

|ﬂb@ |

Figure 12-36 External Snoop Request, System Interface in Master State

- _ Slave —>|<— Master—>|<— Slave —
scyde || 1] 23| als]|e] 7|8]9 w]1]a]

SClock |

SysAD Bus |

SysCmd Bus |

validout |

ValidIn*

|
ExtRgst* |
|

Release*

Figure 12-37 External Snoop Request, System Interface in Slave State

MIPS R4000 Microprocessor User's Manual 353

Chapter 12

Read Response Protocol

An external agent must return data to the processor in response to a
processor read request by using a read response protocol. A read response
protocol consists of the following steps:

1. The external agent waits for the processor to perform an uncompelled
change to slave state.

2. The processor returns the data through a single data cycle or a series
of data cycles.

3. After the last data cycle is issued, the read response is complete and
the external agent sets the SysCmd and SysAD buses to a tri-state.

4. The System interface returns to master state.

NOTE: The processor always performs an uncompelled change to
slave state after issuing a read request.

5. The data identifier for data cycles must indicate the fact that this data
is response data.

6. The data identifier associated with the last data cycle must contain a
last data cycle indication.

For read responses to coherent block read requests, each data identifier
must include the cache state of the response data. The cache state
provided with each data identifier must be the same and must be clean
exclusive, dirty exclusive, shared, or dirty shared. The behavior of the
processor is undefined if the cache state provided with the data identifiers
changes during the transfer of the block of data, or if the cache state
provided is invalid.

The data identifier associated with a data cycle can indicate that the data
transmitted during that cycle is erroneous; however, an external agent
must return a data block of the correct size regardless of the fact that the
data may be in error. If a read response includes one or more erroneous
data cycles, the processor then takes a bus error.

Read response data must only be delivered to the processor when a
processor read request is pending. The behavior of the processor is
undefined when a read response is presented to it and there is no
processor read pending. Further, if the processor issues a read-with-write-
forthcoming request, a processor write request or a processor null write
request must be accepted before the read response can be returned. The
behavior of the processor is undefined if the read response is returned
before a processor write request is accepted.

354

MIPS R4000 Microprocessor User's Manual

System Interface

Figure 12-38 illustrates a processor word read request followed by a word
read response. Figure 12-39 illustrates a read response for a processor
block read with the System interface already in slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

- Master > | < Slave —» |« Master »
scyde |12 s|a]s|e| 7] 8|9 |10]1]|12]
SClock | >_/__/__/__/_>>_/__/__/__/__/_L
SysAD Bus | X Adar Data0 }——

O
)

SysCmd Bus | X Read

validout* |

valdin® | <

<
ExtRqgst* |
Release* | d

Figure 12-38 Processor Word Read Request, followed by a Word Read Response

- Slave > | - Master >
sCycle | 1] 2 3] als|e]|7]8]| 9 |10]1]12]
sClock |
SysAD Bus | \ Data0) Data1 } Data2 } Data3)B—@(

SysCmd Bus | Y cData c/ Ata CDa{aX@H
validout | @/ 5 5
vaian |\ /
ExtRgst |

Release* |

Figure 12-39 Block Read Response, System Interface already in Slave State

MIPS R4000 Microprocessor User's Manual 355

Chapter 12

12.7 Data Rate Control

The System interface supports a maximum data rate of one doubleword
per cycle. The data rate the processor can supportis directly related to the
secondary cache access time; if the access time is too long, the processor
cannot transmit and accept data at the maximum rate.

The rate at which data is delivered to the processor can be determined by
the external agent—for example, the external agent can drive data and
assert ValidIn* every n cycles, instead of every cycle. An external agent
can deliver data at any rate it chooses, but must not deliver data to the
processor any faster than the processor is capable of receiving it.

The processor only accepts cycles as valid when ValidIn* is asserted and
the SysCmd bus contains a data identifier; thereafter, the processor
continues to accept data until it receives the data word tagged as the last
one.

Data Transfer Patterns

A data pattern is a sequence of letters indicating the data and unused cycles
that repeat to provide the appropriate data rate. For example, the data
pattern DDxx specifies a repeatable data rate of two doublewords every
four cycles, with the last two cycles unused. Table 12-6 lists the maximum
processor data rate for each of the possible secondary cache write cycle
times, and the most efficient data pattern for each data rate.

Table 12-6 Transmit Data Rates and Patterns

Maximum Data Rate Data Pattern MaXéZ\CuhrZ iigggsdary
1 Double/1 SClock Cycle D 4 PCycles
2 Doubles/3 SClock Cycles | DDx 6 PCycles
1 Double/2 SClock Cycles DDxx 8 PCycles
1 Double/2 SClock Cycles DxDx 8 PCycles
2 Doubles/5 SClock Cycles | DDxxx 10 PCycles
1 Double/3 SClock Cycles DDxxxx 12 PCycles
1 Double/3 SClock Cycles DxxDxx 12 PCycles
1 Double/4 SClock Cycles DDxXxXXXXX 16 PCycles
1 Double/4 SClock Cycles DxxxDxxx 16 PCycles

356

MIPS R4000 Microprocessor User's Manual

System Interface

In Tables 12-6 and 12-7, data patterns are specified using the letters D and
x; D indicates a data cycle and x indicates an unused cycle. Figure 12-40
shows a read response in which data is provided to the processor at a rate
of two doublewords every three cycles using the data pattern DDx.

scyee || 12| s |a]|s]|e| 7|8 |9]|10]n]1]
N VAV AVAVAVAVAVAWAWAWAWAN
SysAD Bus | X Data0 X DatalX X Data2 X Data3)—(

SysCmd Bus | Ycpata)cData) JcData)lcEOD ——
validout |

validin® | \ [\ /
ExtRqst* |

Release* |

Figure 12-40 Read Response, Reduced Data Rate, System Interface in Slave State

Secondary Cache Transfers

The processor operates most efficiently if data is delivered in pairs of
doublewords, since the secondary cache is organized as a 128-bit RAM
array. The most efficient way of reducing the data rate is to deliver a pair
of doublewords followed by some number of unused cycles, followed by
another pair of doublewords. The secondary cache write cycle time
should determine the rate at which this pattern is repeated. However, the
processor accepts data in any pattern as long as the time between the
transfer of any pair of odd-numbered doublewords is greater than, or
equal to, the write cycle time of the secondary cache. Doublewords in the
transfer pattern are numbered beginning at 0: the odd-numbered
doublewords are the second, fourth, sixth, and so on.

MIPS R4000 Microprocessor User's Manual 357

Chapter 12

Secondary Cache Write Cycle Time

Behavior of the processor is undefined if, based on the secondary cache
write cycle time, data is delivered to the processor faster than the
processor can handle it. Secondary cache write cycle time is defined as the
sum of the parameters:

Twripty: Twrsup: @nd Tyyrre
These parameters are defined in Chapter 9, Table 9-1.

The rate at which the processor transmits data to an external agent is
programmable at boot time through the boot-time mode control interface.
The transmit data rate can be programmed to any of the data rates and
data patterns listed in Table 12-6, as long as the programmed data rate
does not exceed the maximum rate the processor can handle, based on the
secondary cache write cycle time. The behavior of the processor is
undefined if a programmed transmit data rate exceeds the maximum the
processor can support.

Figure 12-41 shows a processor write request in which the processor
transmit data rate is programmed as one doubleword every two cycles,
using the data pattern DDxx.

scyee || 1|23 |a]s|e| 7|8 |9]|10]n]1]
YAV AVAVYAYAVAVARAWAWAVAN
SysAD Bus | X Addr)} Data0) Data1) X Data2){ Data3)}

SysCmd Bus | X write \cData }cData {cpata {cEOD

validout |\ [\]

validin® |

ExtRgst* |

Release* |

Figure 12-41 Processor Write Request, Transmit Data Rate Reduced

358 MIPS R4000 Microprocessor User's Manual

System Interface

Table 12-7 shows the maximum transmit data rates for a given set of
secondary cache parameters, based on a PClock-to-SClock divisor of 2. To
find the maximum allowable secondary cache write cycle time and
secondary cache access time, multiply the maximum secondary cache
numbers for each pattern by:

(PClock_to_SClock_Divisor)/2

The minimum number for these parameters is always the minimum access
time supported by processor.

Table 12-7 Maximum Transmit Data Rates

Wiite Cycls Time | Maximum DataRate | P8 O
1-4 PCycles 1 Double/1 SClock Cycle D
5-6 PCycles 2 Doubles/3 SClock Cycles | DDx
7-8 PCycles 1 Double/2 SClock Cycles | DDxx
9-10 PCycles 2 Doubles/5 SClock Cycles | DDxxx
11-12 PCycles 1 Double/3 SClock Cycles | DDxxxx

Independent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection,
running from the processor to a bidirectional registered transceiver
residing in an external agent. For these applications, the SysAD bus has
only two possible drivers, the processor or the external agent.

Certain applications may require connection of additional drivers and
receivers to the SysAD bus, to allow transmissions over the SysAD bus
that the processor is not involved in. These are called independent
transmissions. To effect an independent transmission, the external agent
must coordinate control of the SysAD bus by using arbitration handshake
signals and external null requests.

MIPS R4000 Microprocessor User's Manual 359

Chapter 12

An independent transmission on the SysAD bus follows this procedure:

1. The external agent requests mastership of the SysAD bus, to issue an
external request.

2. The processor releases the System interface to slave state.

3. If the processor is being used with a secondary cache, the external
agent issues a secondary cache release external null request to return
ownership of the secondary cache to the processor.

4. The external agent then allows the independent transmission to take
place on the SysAD bus, making sure that ValidIn* is not asserted
while the transmission is occurring.

5. When the transmission is complete, the external agent must issue a
System interface release external null request to return the System
interface to master state.

System Interface Endianness

The endianness of the System interface is programmed at boot time
through the boot-time mode control interface, and remains fixed until the
next time the processor mode bits are read. Software cannot change the
endianness of the System interface and the external system; software can
set the reverse endian bit to reverse the interpretation of endianness inside
the processor, but the endianness of the System interface remains
unchanged.

360

MIPS R4000 Microprocessor User's Manual

System Interface

12.8 System Interface Cycle Time

The processor specifies minimum and maximum cycle counts for various
processor transactions and for the processor response time to external
requests. Processor requests themselves are constrained by the System
interface request protocol, and request cycle counts can be determined by
examining the protocol. The following System interface interactions can
vary within minimum and maximum cycle counts:

spacing between requests within a cluster (cluster request
spacing)

waiting period for the processor to release the System interface
to slave state in response to an external request (release latency)

response time for an external request that requires a response
(external response latency).

The remainder of this section describes and tabulates the minimum and
maximum cycle counts for these System interface interactions.

Cluster Request Spacing

Processor internal activity determines the minimum and maximum
number of unused cycles allowed between the requests within a cluster.

The minimum number of unused cycles allowed between
requests within a cluster is 0: in other words, the requests can
be adjacent.

The maximum number of unused cycles separating requests
within a cluster varies depending on the requests that form the
cluster.

Table 12-8 summarizes the minimum and maximum number of unused
cycles allowed between requests within a cluster.

Table 12-8 Unused Cycles Separating Requests within a Cluster

From Processor | To Processor | Minimum Unused | Maximum Unused
Request Request SClock Cycles SClock Cycles

Read Update 0 2

Read Write 0 2

Update Write 0 2

MIPS R4000 Microprocessor User's Manual

361

Chapter 12

Release Latency

Release latency is generally defined as the number of cycles the processor
can wait to release the System interface to slave state for an external
request. When no processor requests are in progress, internal activity—
such as refilling the primary cache from the secondary cache—can cause
the processor to wait some number of cycles before releasing the System
interface. Release latency is therefore more specifically defined as the
number of cycles that occur between the assertion of ExtRgst* and the
assertion of Release*.

There are three categories of release latency:

= Category 1: when the external request signal is asserted two
cycles before the last cycle of a processor request, or two cycles
before the last cycle of the last request in a cluster.

= Category 2: when the external request signal is not asserted
during a processor request or cluster, or is asserted during the
last cycle of a processor request or cluster.

= Category 3: when the processor makes an uncompelled change
to slave state.

Table 12-9 summarizes the minimum and maximum release latencies for
requests that fall into categories 1, 2, 3a and 3b. Note that the maximum
and minimum cycle count values are subject to change.

Table 12-9 Release Latency for External Requests

Category Minimum PCycles Maximum PCycles
1 4 6
2 4 24
3a 0 See (3a), below
3b 0 See (3b), below

Tais
+ 4- or 8-word Secondary cache write cycle time
(depending upon Primary cache size)
+ 4-word Secondary cache write cycle time
+ Secondary cache line size
+ 16 PCycles

(Ba)Read= <

(3b) Read
With Write
Forthcoming

4-word Secondary cache Write cycle time
+ 4 PCycles

362

MIPS R4000 Microprocessor User's Manual

System Interface

External Request Response Latency

The number of cycles the processor takes to respond to an external
intervention request, read request, or snoop request, are referred to as the
intervention response latency, external read response latency, or snoop response
latency, respectively.

The number of latency cycles is the number of unused cycles between the
address cycle of the request and the first data cycle of the response.
Intervention response latency and snoop response latency are a function
of processor internal activity and secondary cache access time. Table 12-
10 summarizes the minimum and maximum intervention response
latency and snoop response latency. Note that the latency values are
subject to change.

Table 12-10 Intervention Response and Snoop Response Latencies

. Intervention

Maximum Secondary Response Snoop Response

Cache Latency Latency

Access - -

Min Max Min Max

1-4 PCycles 6 26 6 26
5-6 PCycles 8 28 8 28
7-8 PCycles 10 30 10 30
9-10 PCycles 12 32 12 32
11-12 PCycles 14 34 14 34

External read response latency is a function of processor internal activity.
Minimum and maximum external read response latency is 4 PCycles.

MIPS R4000 Microprocessor User's Manual 363

Chapter 12

12.9 System Interface Commands and Data Identifiers

System interface commands specify the nature and attributes of any
System interface request; this specification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a System interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding of
System interface commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for System interface commands and data identifiers
associated with external requests. For System interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in 9 bits and
are transmitted on the SysCmd bus from the processor to an external
agent, or from an external agent to the processor, during address and data
cycles. Bit 8 (the most-significant bit) of the SysCmd bus determines
whether the current content of the SysCmd bus is a command or a data
identifier and, therefore, whether the current cycle is an address cycle or a
data cycle. For System interface commands, SysCmd(8) must be set to 0.
For System interface data identifiers, SysCmd(8) must be set to 1.

364 MIPS R4000 Microprocessor User's Manual

System Interface

System Interface Command Syntax

This section describes the SysCmd bus encoding for System interface
commands. Figure 12-42 shows a common encoding used for all System
interface commands.

0 Request Type Request Specific

Figure 12-42 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all System interface commands.

SysCmd(7:5) specify the System interface request type which may be read,
write, null, invalidate, update, intervention, or snoop; Table 12-11 lists the
encoding of SysCmd(7:5).

Table 12-11 shows the types of requests encoded by the SysCmd(7:5) bits.

Table 12-11 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(7:5) Command

0 Read Request

Read-With-Write-Forthcoming Request

Write Request

Null Request

Invalidate Request

Update Request

Intervention Request

~N|[o|lo|bh|wWwN|

Snoop Request

SysCmd(4:0) are specific to each type of request and are defined in each of
the following sections.

MIPS R4000 Microprocessor User's Manual 365

Chapter 12

Read Requests

Figure 12-43 shows the format of a SysCmd read request.

8 7 5 4 3 2 1 0

000
0 or
001

Read Reqlljest Slpecific
(see tables)

|
Figure 12-43 Read Request SysCmd Bus Bit Definition

Tables 12-12 through 12-14 list the encodings of SysCmd(4:0) for read
requests.

Table 12-12 Encoding of SysCmd(4:3) for Read Requests

SysCmd(4:3) Read Attributes
0 Coherent block read
1 Coherent block read, exclusivity requested
2 Noncoherent block read
3 Doubleword, partial doubleword, word, or partial word

Table 12-13 Encoding of SysCmd(2:0) for Coherent and Noncoherent
Block Read Request

SysCmd(2) Link Address Retained Indication

0 Link address not retained
1 Link address retained

SysCmd(1:0) Read Block Size
0 4 words
1 8 words
2 16 words
3 32 words

366 MIPS R4000 Microprocessor User's Manual

System Interface

Table 12-14 Doubleword, Word, or Partial-word Read Request Data Size
Encoding of SysCmd(2:0)

SysCmd(2:0) Read Data Size
0 1 byte valid (Byte)

2 bytes valid (Halfword)

3 bytes valid (Tribyte)

4 bytes valid (Word)

5 bytes valid (Quintibyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septibyte)

8 bytes valid (Doubleword)

~N|o|lo|b~[{wW|I N

Write Requests
Figure 12-44 shows the format of a SysCmd write request.

Table 12-15 lists the write attributes encoded in bits SysCmd(4:3). Table
12-16 lists the block write replacement attributes encoded in bits
SysCmd(2:0). Table 12-17 lists the write request bit encodings in

SysCmd(2:0).
8 7 5 4 3 2 1 0
0 010 Write Request Specific

(see tables)
| |

Figure 12-44 Write Request SysCmd Bus Bit Definition

Table 12-15 Write Request Encoding of SysCmd(4:3)

SysCmd(4:3) Write Attributes
0 Reserved
1 Reserved
2 Block write

Doubleword, partial doubleword, word, or
partial word

MIPS R4000 Microprocessor User's Manual 367

Chapter 12

Table 12-16 Block Write Request Encoding of SysCmd(2:0)

SysCmd(2) Cache Line Replacement Attributes

0 Cache line replaced

1 Cache line retained’

SysCmd(1:0) Write Block Size

0 4 words

1 8 words

2 16 words

3 32 words

tThe only time the processor sets this bit is if a Hit Writeback causes the processor
to execute a write request (see Cache Write Policy in Chapter 11).

Table 12-17 Doubleword,Word, or Partial-word Write Request Data Size

Encoding of SysCmd(2:0)

SysCmd(2:0)

Write Data Size

0

1 byte valid (Byte)

2 bytes valid (Halfword)

3 bytes valid (Tribyte)

4 bytes valid (Word)

5 bytes valid (Quintibyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septibyte)

~N|o|lo|b~[{W|IDN]| -

8 bytes valid (Doubleword)

368

MIPS R4000 Microprocessor User's Manual

System Interface

Null Requests

Figure 12-45 shows the format of a SysCmd null request.

8 7

5 4 3 2 1 0

0

011

Null Request Specific
(see tables)
| |

Figure 12-45 Null Request SysCmd Bus Bit Definition

Processor null write requests, System interface release external null
requests, and secondary cache release external null requests all use the
null request command. Table 12-18 lists the encodings of SysCmd(4:3) for
processor null write requests. Table 12-19 lists the encodings of
SysCmd(4:3) for external null requests.

SysCmd(2:0) are reserved for both instances of null requests.

Table 12-18 Processor Null Write Request Encoding of SysCmd(4:3)

SysCmd(4:3) Null Write Attributes
0 Null write
1 Reserved
2 Reserved
3 Reserved

Table 12-19 External Null

Request Encoding of SysCmd(4:3)

SysCmd(4:3) Null Attributes
0 System Interface release
1 Secondary cache release
2 Reserved
3 Reserved

MIPS R4000 Microprocessor User's Manual

369

Chapter 12

Invalidate Requests

Figure 12-46 shows the format for an invalidate request, and Table 12-20
lists the encodings of SysCmd(4:0) for an external invalidate request.

SysCmd(4:0) are reserved on a processor invalidate request.

8

7

5 4 3 2 0

0

In\l/alidateI Request
Specific
(see table)
]

100

Figure 12-46 Invalidate Request SysCmd Bus Bit Definition

Table 12-20 Encoding of SysCmd(4:0) for External Invalidate Requests

SysCmd(4) Processor UnacknCJCv;/:lectjegl];(:i:)r:]validate or Update
0 Invalidate or Update cancelled
1 No cancellation
SysCmd(3:0) | Reserved

Update Requests

Figure 12-47 shows the format for a SysCmd update request.
5

8

7

4 3 2 0

0

101 Update Request Specific
(see tables)
| |

Figure 12-47 Update Request SysCmd Bus Bit Definition

Table 12-21 lists the encodings of SysCmd(4:0) for external update
requests. Table 12-22 lists the encodings of SysCmd(4:0) for processor

update requests. The remaining upper bits are the same for both processor
and external update requests.

370

MIPS R4000 Microprocessor User's Manual

System Interface

Table 12-21 Encoding of SysCmd(4:0) for External Update Requests

Processor Unacknowledged Invalidate or

SysCmd(4) Update Cancellation
0 Invalidate or Update cancelled
1 No cancellation
SysCmd(3) Update Cache State Change Attributes
0 Cache state changed to shared
1 No change to cache state
SysCmd(2:0) Update Data Size
0 1 byte valid (Byte)
1 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte)
3 4 bytes valid (Word)
4 5 bytes valid (Quintibyte)
5 6 bytes valid (Sextibyte)
6 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword)

Table 12-22 Encoding of SysCmd(4:0) for Processor Update Requests

SysCmd(4) Reserved

SysCmd(3) Update type
0 Compulsory
1 Potential

SysCmd(2:0) Update Data Size

0 1 byte valid (Byte)
1 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte).
3 4 bytes valid (Word)
4 5 bytes valid (Quintibyte)
5 6 bytes valid (Sextibyte)
6 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword)

MIPS R4000 Microprocessor User's Manual

371

Chapter 12

Intervention and Snoop Requests

Figure 12-48 shows the format of an intervention request; Figure 12-49
shows the format of a snoop request. Table 12-23 lists the encodings of
SysCmd(4:0) for intervention requests; Table 12-24 lists the encodings
SysCmd(4:0) for snoop requests.

8 7 5 4 3 2 0
0 110 Intervention Request Specific
(see table)
| |

Figure 12-48 Intervention Request SysCmd Bus Bit Definition

Table 12-23 Encodings of SysCmd(4:0) for Intervention Requests

Processor Unacknowledged Invalidate or Update

SysCmd(4) Cancellation
0 Update or Invalidate cancelled
1 No cancellation
SysCmd(3) Response to Dirty or Exclusive State
0 Return cache line data if in the dirty exclusive or dirty
shared state
1 Returq cache line data if in the clean exclusive or dirty
exclusive state
SysCmd(2:0) Cache State Change Function
0 No change to cache state
1 If cache_ state is clean exclusive, change to shared;
otherwise no change to cache state
5 If cache state is clean exclusive or shared, change to

invalid; otherwise no change to cache state

If cache state is clean exclusive, change to shared; if cache
3 state is dirty exclusive, change to dirty shared; otherwise
make no change to cache state

If cache state is clean exclusive, dirty exclusive, or dirty
4 shared, change to shared; otherwise make no change to
cache state

Change to invalid regardless of current cache state

Reserved

Reserved

372 MIPS R4000 Microprocessor User's Manual

System Interface

8 5 4 3 2 0
0 111 Snoop Request Specific
(see table)
| |

Figure 12-49 Snoop Request SysCmd Bus Bit Definition

Table 12-24 Encodings of SysCmd(4:0) for Snoop Requests

SysCmd(4) Processor Unacknowledged Update Cancellation
0 Update cancelled
1 No cancellation
SysCmd(3) Reserved
SysCmd(2:0) Cache State Change Function
0 No change to cache state
1 If cache state is clean exclusive, change to shared state;
otherwise make no change to cache state
2 If cache state is clean exclusive or shared, change to
invalid state; otherwise make no change to cache state
If cache state is clean exclusive, change to shared; if
3 cache state is dirty exclusive, change to dirty shared;
otherwise make no change to cache state
If cache state is clean exclusive, dirty exclusive, or
4 dirty shared, change to shared; otherwise make no
change to cache state
Change to invalid regardless of current cache state
Reserved
Reserved

MIPS R4000 Microprocessor User's Manual 373

Chapter 12

System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd bus for System interface
data identifiers. Figure 12-50 shows a common encoding used for all
System interface data identifiers.

8 7 6 5 4 3 2 0
See
1 Last Resp Err Note |Reserved | Cache
Data Data | Data | befow State

Figure 12-50 Data Identifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all System interface data identifiers.

NOTE: SysCmd(4) is reserved for processor data identifier. In an
external data identifier, SysCmd(4) indicates whether or not to check
the data and check bits for error.

System interface data identifiers have two formats, one for coherent data
and another for noncoherent data.

Coherent Data

Coherent data is defined as follows:

= data that is returned in response to a processor coherent block
read request

= data that is returned in response to an external intervention
request.

Noncoherent Data

Noncoherent data is defined as follows:

« data that is associated with processor block write requests and
processor doubleword, partial doubleword, word, or partial
word write requests

= data that is returned in response to a processor noncoherent
block read request or a processor doubleword, partial
doubleword, word, or partial word read request

= data that is associated with external update requests

- data that is associated with external write requests

e data that is returned in response to an external read request
= data that is associated with processor update requests.

374 MIPS R4000 Microprocessor User's Manual

System Interface

Data ldentifier Bit Definitions

SysCmd(7) marks the last data element and SysCmd(6) indicates whether
or not the data is response data, for both processor and external coherent
and noncoherent data identifiers. Response data is data returned in
response to a read request or an intervention request.

SysCmd(5) indicates whether or not the data element is error free.
Erroneous data contains an uncorrectable error and is returned to the
processor, forcing a bus error. In the case of a block response, the entire
line must be delivered to the processor no matter how minimal the error.
The processor delivers data with the good data bit deasserted if a primary
parity error is detected for a transmitted data item. If the system isin ECC
mode, a secondary cache data ECC error is detected by comparing the
values transmitted on the SysAD and SysADC.

SysCmd(4) indicates to the processor whether to check the data and check
bits for this data element, for both coherent and noncoherent external data
identifiers.

SysCmd(3) is reserved for external data identifiers.

SysCmd(4:3) are reserved for both coherent and noncoherent processor
data identifiers.

SysCmd(2:0) indicate the data cache state to load the cache line, in
response to processor coherent read requests for coherent data identifiers.
SysCmd(2:0) also indicate the cache state for response data to an external
intervention request, or for the data cycle issued in response to an external
snoop request. SysCmd(2:0) are reserved for noncoherent data identifiers.

Table 12-25 lists the encodings of SysCmd(7:3) for processor data
identifiers. Table 12-26 lists the encodings of SysCmd(7:3) for external
data identifiers. Table 12-27 lists the encodings of SysCmd(2:0) for
coherent data identifiers.

MIPS R4000 Microprocessor User's Manual 375

Table 12-25 Processor Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indication
0 Last data element
1 Not the last data element

SysCmd(6) Response Data Indication
0 Data is response data
1 Data is not response data

SysCmd(5) Good Data Indication
0 Data is error free
1 Data is erroneous

SysCmd(4:3) | Reserved

Table 12-26 External Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indication
0 Last data element
1 Not the last data element
SysCmd(6) Response Data Indication
0 Data is response data
1 Data is not response data
SysCmd(5) Good Data Indication
0 Data is error free
1 Data is erroneous
SysCmd(4) Data Checking Enable
0 Check the data and check bits
1 Do not check the data and check bits
SysCmd(3) | Reserved

MIPS R4000 Microprocessor User's Manual

System Interface

Table 12-27 Coherent Data Identifiers Encoding of SysCmd(2:0)

SysCmd(2:0)

Cache State

0

Invalid’

Reserved

Reserved

Reserved

Clean Exclusive

Dirty Exclusive

Shared

~N|[o|lo|b|lwN|

Dirty Shared

TThis state also occurs if the line does not exist in the cache.

12.10 System Interface Addresses

System interface addresses are full 36-bit physical addresses presented on
the least-significant 36 bits (bits 35 through 0) of the SysAD bus during
address cycles; the remaining bits of the SysAD bus are unused during
address cycles.

Addressing Conventions

Addresses associated with doubleword, partial doubleword, word, or
partial word transactions and update requests, are aligned for the size of
the data element. The system uses the following address conventions:

Addresses associated with block requests are aligned to
double-word boundaries; that is, the low-order 3 bits of

address are 0.

Doubleword requests set the low-order 3 bits of address to 0.

Word requests set the low-order 2 bits of address to 0.

Halfword requests set the low-order bit of address to 0.

Byte, tribyte, quintibyte, sextibyte, and septibyte requests use

the byte address.

MIPS R4000 Microprocessor User's Manual

377

Chapter 12

Sequential and Subblock Ordering

The order in which data is returned in response to a processor block read
request can be programmed to sequential ordering or subblock ordering,
using the boot-time mode control interface. Appendix C has more
information about subblock ordering. Either sequential or subblock
ordering may be enabled, as follows:

= If sequential ordering is enabled on a block read request, the
processor delivers the address of the doubleword at the start of
the block. An external agent must return the block of data
sequentially from the beginning of the block.

= If subblock ordering is enabled, the processor delivers the
address of the requested doubleword within the block. An
external agent must return the block of data using subblock
ordering, starting with the addressed doubleword.

NOTE: Only R4000SC and R4000MC configurations (using a
secondary cache) can be programmed to use sequential ordering.

For block write requests, the processor always delivers the address of the
doubleword at the beginning of the block; the processor delivers data
beginning with the doubleword at the beginning of the block and
progresses sequentially through the doublewords that form the block.

During data cycles, the valid byte lines depend upon the position of the
data with respect to the aligned doubleword (this may be a byte, halfword,
tribyte, quadbyte/word, quintibyte, sextibyte, septibyte, or an octalbyte/
doubleword). For example, in little-endian mode, on a byte request where
the address modulo 8 is 0, SysAD(7:0) are valid during the data cycles.

12.11 Processor Internal Address Map

External reads and writes provide access to processor internal resources
that may be of interest to an external agent. The processor decodes bits
SysAD(6:4) of the address associated with an external read or write
request to determine which processor internal resource is the target.
However, the processor does not contain any resources that are readable
through an external read request. Therefore, in response to an external
read request the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set. The Interrupt register is the
only processor internal resource available for write access by an external
request. The Interrupt register is accessed by an external write request
with an address of 000, on bits 6:4 of the SysAD bus.

378

MIPS R4000 Microprocessor User's Manual

Secondary Cache Interface

13

The R4000SC and R4000MC versions of the R4000 processor contain

interface signals for an optional external secondary cache. This interface
consists of:

= a 128-bit data bus

= a 25-bit tag bus

= an 18-bit address bus

= various static random access memory (SRAM) control signals.

The 128-bit-wide data bus minimizes the primary cache miss penalty, and
allows the use of standard low-cost SRAMs in the design of the secondary
cache.

The remainder of the System interface signals are described in Chapter 8.

MIPS R4000 Microprocessor User's Manual 379

Chapter 13

13.1 Data Transfer Rates

The interface to the secondary cache maximizes service of primary cache
misses. The Secondary Cache interface, SCData(127:0), supports a data
rate that is close to the processor-to-primary-cache bandwidth during
normal operation. To ensure that this bandwidth is maintained, each data,
tag, and check pin must be connected to a single SRAM device.

The SCAddr bus, together with the SCOE*, SCDCS*, and SCTCS*
signals, drives a large number of SRAM devices; because of this, one level
of external buffering between the processor and the cache array is used.

13.2 Duplicating Signals

The buffered control signals control the speed of the Secondary Cache
interface. Critical control signals are duplicated by design to minimize
this limitation: the SCWR* signal and SCAddr(0) have four versions so
that external buffers are not needed to drive them. When an 8-word
(256-bit) primary cache line is used, these signals can be controlled
quickly, reducing the time of back-to-back transfers.

Each duplicated control signal can drive up to 11 SRAMs; therefore, a total
of 44 SRAM packages can be used in the cache array. This allows a cache
design using 16-Kbyte-by-64-bit, 64-Kbyte-by-4-bit, or 256-Kbyte-by-4-bit
standard SRAM.'

The benefit of duplicating SCAddr(0) is greater in systems that use fast
sequential static cache RAM and an 8-word primary cache line. If
SCAddr(0) is attached to the SRAM address bit that affects column decode
only, the read cycle time should approximate the output enable time of the
RAM. For fast static RAM, this cycle time should be half of the nominal
read cycle time.

t Other cache designs within this constraint are also acceptable. For example, a smaller
cache design can use 22 8-Kbyte-by-8-bit static RAMS; this design presents less load on the
address pins and control signals, and reduces the overall parts count.

380 MIPS R4000 Microprocessor User's Manual

Secondary Cache Interface

13.3 Accessing a Split Secondary Cache

When the secondary cache is split into separate instruction and data
portions, assertion of the high-order SCAddr bit, SCAddr(17), enables the
instruction half of the cache.

It is possible to design a cache that supports both joint and split
instruction/data configurations of less than the maximum cache size; in
doing so, SCAddr(12:0) must address the cache in all configurations.
SCAddr(17) must support the split instruction/data configuration, and
any of SCAddr(16:14) bits can be omitted, because of the fixed width of the
physical tag array.

13.4 SCDChk Bus

The secondary cache data check bus, SCDChk, is divided into two fields
to cover the upper and lower 64 bits of SCData. This form is required by
the 64-bit width of internal data paths.

13.5 SCTAG Bus

The secondary cache tag bus, SCTag, is divided into three fields, as shown
in Figure 13-1. The CS field indicates the cache state: invalid, clean
exclusive, dirty exclusive, shared, or dirty shared. The Pldx field is an
index to the virtual address of primary cache lines that can contain data
from the secondary cache. Bits 18:0 contain the upper physical address.

24 22 21 19 18 0

CS Pldx Physical_Tag

3 3 19
Figure 13-1 SCTag Fields

The SCDCS* and SCTCS* signals disable reads or writes of either the data
array or tag array when the opposite array is being accessed. These signals
are useful for saving power on snoop and invalidate requests since access
to the data array is not necessary. These signals also write data from the

primary data cache to the secondary cache.

MIPS R4000 Microprocessor User's Manual 381

Chapter 13

13.6 Operation of the Secondary Cache Interface

The secondary cache can be configured for various clock rates and static
RAM speeds. All configurable parameters are specified in multiples of
PClock, which runs at twice the frequency of the external system clock,

MasterClock.

During boot time, secondary cache timing parameters are programmed
through the boot-time mode bits, as described in Chapter 9. Table 13-1
lists the secondary cache timing parameters. The following sections
describe secondary cache read and write cycles.

Table 13-1 Secondary Cache Timing Parameters

Symbol Number of Cycles
thlec 4-15 PCycles
tRd2cyc 2-15 PCycles
tpis 2-7 PCycles
terDIy 1-3 PCycles
tWr2D|y 1-3 PCycles
twrre 0-1 PCycles
tWrSUp 3-15 PCycles

382

MIPS R4000 Microprocessor User's Manual

Secondary Cache Interface

Read Cycles

There are two basic read cycles: 4-word read and 8-word read.

Each secondary cache read cycle begins by driving an address out on the

address pins. The output enable signal SCOE* is asserted at the same
time.

This section describes both 4-word and 8-word read cycles, including
timing diagrams.

4-Word Read Cycle

The 4-word read cycle has two user-accessible timing parameters:

trdicyc read sequence cycle time, which specifies the
time from the assertion of the SCAddr bus to
the sampling of the SCData bus

Ipis cache output disable time, which specifies the
time from the end of a read cycle to the start of
the next write cycle

Figure 13-2 illustrates the 4-word read cycle, including the two user-
accessible timing parameters.
PCycle | 1 2 3 4

SCAddr(17:0) :X Address

trd1Cyc

SCData(127:0) ©
SCTag(24:0) X
SCDChK(15:0) Data
SCTChk(6:0)

SCOE* _\

T > X == —
T

tDis
SCAPar(2:0) x X

>_<A;|/

SCDCS*: :X X
ScTCS*: :X X

Figure 13-2 Timing Diagram of a 4-Word Read Cycle

MIPS R4000 Microprocessor User's Manual 383

Chapter 13

8-Word Read Cycle

The 8-word read cycle has an additional user-accessible parameter beyond
that of the 4-word read cycle described above: trgycyc, the time from the
first sample point to the second sample point.

In an 8-word read cycle, the low-order address bit, SCAddr(0), changes at
the same time as the first read sample point.

Figure 13-3 illustrates the 8-word read cycle, including the three user-
accessible timing parameters.

PCycIe|1|2|3|4|5|6|7|8|9|
SCAddr(l?:l):X Address X
L tRd1Cyc J
k >
SCAddf(O):X First_Address X Second_Address X
|
|

tRd2Cyc |
|

SCAPar(2:0)](X)(

SCData(127:0)
SCTag(24:0) :X

SCOCHKISD) \Data) \Data) —

SCOE* \ / _
tpis
\

SCDCS*:X

SCTCS*:X

Figure 13-3 Timing Diagram of an 8-Word Read Cycle

Notes on a Secondary Cache Read Cycle

All read cycles can be aborted by changing the address; a new cycle begins
with the edge on which the address is changed. Additionally, the period
tpjs after a read cycle can be interrupted any time by the start of a new
read cycle. If aread cycle is aborted by a write cycle, SCOE* must be
deasserted for the tp;s period before the write cycle can begin.

Read cycles can also be extended indefinitely. There is no requirement to
change the address at the end of a read cycle.

384 MIPS R4000 Microprocessor User's Manual

Secondary Cache Interface

Write Cycles

There are two basic write cycles: a 4-word write cycle and an 8-word write
cycle. The secondary cache write cycle begins with the assertion of an
address onto the address pins.

This section describes both 4-word and 8-word write cycles, including
timing diagrams.

4-Word Write Cycle

A 4-word write cycle has three timing parameters:

twriply delay from the assertion of the address to the
assertion of SCWR*

twrsup delay from assertion of the second data double-
word to the deassertion of SCWR*

twrRe delay from the deassertion of SCWR* to the
beginning of the next cycle

The timing parameter tyy, R is 0 for most cache designs. Note that the
upper data doubleword and the lower data doubleword are normally
driven one cycle apart; this reduces the peak current consumption in the
output drivers.

Figure 13-4 illustrates the 4-word write cycle. Either the upper or lower
data doubleword can be driven first.

MIPS R4000 Microprocessor User's Manual 385

Chapter 13

PCycle

SCAddr(17:0) :X

SCData(63:0)/
SCDChk(7:0) or
SCData(127:64)/

SCDChk(15:8)

SCTChk(6:0)/
SCTag(24:0)

SCData(127:64)/
SCDChk(15:8) or
SCData(63:0)/
SCDChk(7:0)

SCAPar(2:0)

SCWR*

SCOE*

SCDCS* :X
scTCs* :X

Figure 13-4 Timing Diagram of a 4-Word Write Cycle

s 3 |
Address X
Data —
Data —
(Data)—
| twrsup |
< 2

X

\

twribly

—
tW&L
(U
\
\

8-Word Write Cycle

An 8-word write cycle has one additional parameter beyond those used by
the 4-word write cycle: tyyppjy. This is the time period that begins when
the low-order address bit SCAddr(0) changes and ends when SCWR* is
asserted for the second time. The lower half of SCData is driven on the
same edge as the change in SCAddr(0).

Figure 13-5 illustrates the 8-word write cycle.

386

MIPS R4000 Microprocessor User's Manual

Secondary Cache Interface

Pode 1 2 [s | e | s |6 | 7] 8

SCAddr(17:1) :X Address X

SCAddr(0) :X First_Address X Second_Address X
Sscgsgiéﬁg%/ First_Data X Second_Data)—
2%;?éi?é?g; First_Data X Second_Data)—
First_Data_MS/DTag_Chk Second_Data_MS/DTag_Chk

SCDChk(15:8) 4< X X
SCData(127:64) 4(First_Data

>_
Second_Data)—

SCAPar(2:0) X

A

A

SCWR* \ / \
twriply k fwrSup twr2Dly fwrsup

-

twrRc twrRc
—k— —k—
SCOE* :
scDcs* :X X
SCTCS* :X X

Figure 13-5 Timing Diagram of an 8-Word Write Cycle

Notes on a Secondary Cache Write Cycle

When receiving data from the System interface, the first data doubleword
can arrive several cycles before the second data doubleword. In this case,
the cache state machine enters a wait-state that extends SCWR* until
twrsup Period after the second data item is transmitted.

MIPS R4000 Microprocessor User's Manual 387

Chapter 13

388 MIPS R4000 Microprocessor User's Manual

JTAG Interface

14

The R4000 processor provides a boundary-scan interface that is
compatible with Joint Test Action Group (JTAG) specifications, using the
industry-standard JTAG protocol.

This chapter describes that interface, including descriptions of boundary
scanning, the pins and signals used by the interface, and the Test Access
Port (TAP).

MIPS R4000 Microprocessor User's Manual 389

Chapter 14

14.1 What Boundary Scanning Is

With the evolution of ever-denser integrated circuits (ICs), surface-
mounted devices, double-sided component mounting on printed-circuit
boards (PCBs), and buried vias, in-circuit tests that depend upon making
physical contact with internal board and chip connections have become
more and more difficult to use. The greater complexity of ICs has also
meant that tests to fully exercise these chips have become much larger and
more difficult to write.

One solution to this difficulty has been the development of boundary-scan
circuits. A boundary-scan circuit is a series of shift register cells placed
between each pin and the internal circuitry of the IC to which the pin is
connected, as shown in Figure 14-1. Normally, these boundary-scan cells
are bypassed; when the IC enters test mode, however, the scan cells can be
directed by the test program to pass data along the shift register path and
perform various diagnostic tests. To accomplish this, the tests use the four
signals described in the next section: JTDI, JTDO, JTMS, and JTCK.

Integrated
Circuit

IC package pin [
__/ Boundary-scan cells [

Figure 14-1 JTAG Boundary-scan Cells

390

MIPS R4000 Microprocessor User's Manual

JTAG Interface

14.2 Signal Summary

The JTAG interface signals are listed below and shown in Figure 14-2.

JTDI JTAG serial data in
JTDO JTAG serial data out
JTMS JTAG test mode select
JTCK JTAG serial clock input

2 0

Instruction
register

JTDI pin

Bypass

register JTDO pin

[

JTMS pin

Boundary-
scan
register

JTCK pin

Figure 14-2 JTAG Interface Signals and Registers

The JTAG boundary-scan mechanism (referred to in this chapter as JTAG
mechanism) allows testing of the connections between the processor, the
printed circuit board to which it is attached, and the other components on
the circuit board.

In addition, the JTAG mechanism provides rudimentary capability for
low-speed logical testing of the secondary cache RAM. The JTAG
mechanism does not provide any capability for testing the processor itself.

MIPS R4000 Microprocessor User's Manual 391

Chapter 14

14.3 JTAG Controller and Registers

The processor contains the following JTAG controller and registers:
= Instruction register
= Boundary-scan register
= Bypass register
e Test Access Port (TAP) controller

The processor executes the standard JTAG EXTEST operation associated
with External Test functionality testing.

Instruction Register

The JTAG Instruction register includes three shift register-based cells; this
register is used to select the test to be performed and/or the test data
register to be accessed. As listed in Table 14-1, this encoding selects either
the Boundary-scan register or the Bypass register.

Table 14-1 JTAG Instruction Register Bit Encoding

MSB. LSB Data Register
0O 0 O Boundary-scan register (external test only)
x x 1 Bypass register
x 1 x Bypass register
1 x X Bypass register

The Instruction register has two stages:
= shift register
e parallel output latch

Figure 14-3 shows the format of the Instruction register.

MSB LSB

Figure 14-3 Instruction Register

392 MIPS R4000 Microprocessor User's Manual

JTAG Interface

Bypass Register

The Bypass register is 1 bit wide. When the TAP controller is in the Shift-
DR (Bypass) state, the data on the JTDI pin is shifted into the Bypass
register, and the Bypass register output shifts to the JTDO output pin.

In essence, the Bypass register is a short-circuit which allows bypassing of
board-level devices, in the serial boundary-scan chain, which are not
required for a specific test. The logical location of the Bypass register in the
boundary-scan chain is shown in Figure 14-4. Use of the Bypass register
speeds up access to boundary-scan registers in those ICs that remain
active in the board-level test datapath.

JTDI

Bypass
register

Boundary-scan
IC package
P 9 . register pad cell

Board

Figure 14-4 Bypass Register Operation

MIPS R4000 Microprocessor User's Manual 393

Chapter 14

Boundary-Scan Register

The Boundary-scan register is a single, 319-bit-wide, shift register-based
path containing cells connected to all input and output pads on the R4000
processor. Figure 14-5 shows the three most-significant bits of the
Boundary-scan register; these three bits control the output enables on the
various bidirectional buses.

319 318 317 316 1
OE3 OE2 OE1 See Table 14-2

Figure 14-5 Output Enable Bits of the Boundary-scan Register

The most-significant bit, OE3 (bit 319), is the JTAG output enable bit for
the SysAD, SysADC, SysCmd, and SysCmdP buses. Output is enabled
when this bit is set to 1.

OE2 (bit 318) is the JTAG output enable for the SCData and SCDChk
buses. Output is enabled when this bit is set to 1.

OEL (bit 317) is the JTAG output enable for the SCTag and SCTChk buses.

The remaining 316 bits correspond to 316 signal pads of the processor.
Output is enabled when this bit is set to 1.

At the end of this chapter, Table 14-2 lists the scan order of these 316 scan
bits, starting from JTDI and ending with JTDO.

394

MIPS R4000 Microprocessor User's Manual

JTAG Interface

Test Access Port (TAP)

JTCK

The Test Access Port (TAP) consists of the four signal pins: JTDI, JTDO,
JTMS, and JTCK. Serial test data and instructions are communicated
over these four signal pins, along with control of the test to be executed.

As Figure 14-6 shows, data is serially scanned into one of the three
registers (Instruction register, Bypass register, or the Boundary-scan register)
from the JTDI pin, or it is scanned from one of these three registers onto

the JTDO pin.

The JTDI input feeds the least-significant bit (LSB) of the selected register,
whereas the most-significant bit (MSB) of the selected register appears on
the JTDO output.

The JTMS input controls the state transitions of the main TAP controller
state machine.

The JTCK input is a dedicated test clock that allows serial JTAG data to be
shifted synchronously, independent of any chip-specific or system clocks.

A

'

JTMS and JTDI sampled
on rising edge of JTCK

Data scanned in serially

JTDO sampled on A

falling edge of JTCK

Data scanned out serially

2 0 2 0
Instruction Instruction
register register
0 0

LSB :
Bypass JTDI pin Bypass JTDO pin
register register
JTMS pin 319 1
Boundary- Boundary-
scan scan
register register

Figure 14-6 JTAG Test Access Port

Data on the JTDI and JTMS pins is sampled on the rising edge of the
JTCK input clock signal. Data on the JTDO pin changes on the falling
edge of the JTCK clock signal.

MIPS R4000 Microprocessor User's Manual

395

Chapter 14

TAP Controller

The processor implements the 16-state TAP controller as defined in the
IEEE JTAG specification.

Controller Reset

The TAP controller state machine can be put into Reset state by one of the
following:

deassertion of the VCCOK input resets the TAP controller

keeping the JTMS input signal asserted through five
consecutive rising edges of JTCK input sends the TAP
controller state machine into its Reset state.

In either case, keeping JTMS asserted maintains the Reset state.

Controller States

The TAP controller has four states: Reset, Capture, Shift, and Update.
They can reflect either instructions (as in the Shift-IR state) or data (as in
the Capture-DR state).

When the TAP controller is in the Reset state, the value 0x7 is
loaded into the parallel output latch, selecting the Bypass
register as default. The three most significant bits of the
Boundary-scan register are cleared to 0, disabling the outputs.

When the TAP controller is in the Capture-IR state, the value
0x4 is loaded into the shift register stage.

When the TAP controller is in the Capture-DR (Boundary-scan)
state, the data currently on the processor input and 1/0 pins is
latched into the Boundary-scan register. In this state, the
Boundary-scan register bits corresponding to output pins are
arbitrary and cannot be checked during the scan out process.

When the TAP controller is in the Shift-IR state, data is loaded
serially into the shift register stage of the Instruction register
from the JTDI input pin, and the MSB of the Instruction
register’s shift register stage is shifted onto the JTDO pin.

396

MIPS R4000 Microprocessor User's Manual

JTAG Interface

When the TAP controller is in the Shift-DR (Boundary-scan)
state, data is serially shifted into the Boundary-scan register
from the JTDI pin, and the contents of the Boundary-scan
register are serially shifted onto the JTDO pin.

When the TAP controller is in the Update-IR state, the current
data in the shift register stage is loaded into the parallel output
latch.

When the TAP controller is in the Update-DR (Boundary-scan)
state, data in the Boundary-scan register is latched into the
register parallel output latch. Bits corresponding to output
pins, and those 170 pins whose outputs are enabled (by the
three MSBs of the Boundary-scan register), are loaded onto the
processor pins.

Table 14-2 shows the boundary scan order of the processor signals.

Table 14-2 JTAG Scan Order of R4000 Processor Pins

Pin# Signal Name | Pin# Signal Name | Pin# Signal Name | Pin# Signal Name
1. SCDChk(13) 2. SysADC(1) 3. SCDChk(1) 4. SysADC(5)
5. SCDChk(5) 6. Status(0) 7. Status(1) 8. Status(2)
9. Status(3) 10. IvdErr* 11. Status(4) 12. IvdAck*
13. Status(5) 14. Status(6) 15. Status(7) 16. SCDChk(7)
17. SysADC(7) 18. SCDChk(3) 19. SysADC(3) 20. SCDChk(15)
21. VCCOKk 22. SCTag(16) 23. SCDChk(11) 24. SCData(63)
25. SysAD(63) 26. SCData(31) 27. SysAD(31) 28. SCData(127)
29. SCTag(17) 30. SCbData(95) 31. SCbData(62) 32. SysAD(62)
33. SCData(30) 34. SysAD(30) 35. SCData(126) 36. SCTag(18)
37. SCbData(94) 38. RClock(1:0) (share | 39. SCTag(19) 40. SCbData(61)
the same JTAG bit)
41. SysAD(61) 42. SCbData(29) 43. SysAD(29) 44. SCData(125)
45. Reset* 46. SCTag(20) 47. SCData(93) 48. SCbData(60)
49. SysAD(60) 50. SCbData(28) 51. SysAD(28) 52. SCData(124)
53. ColdReset* 54. SCTag(21) 55. SCbData(92) 56. SCbData(59)
57. SysAD(59) 58. SCbData(27) 59. SysAD(27) 60. SCbData(123)
61. 10In 62. SCTag(22) 63. SCData(91) 64. SCbData(58)
65. SysAD(58) 66. SCData(26) 67. SysAD(26) 68. SCData(122)
69. 100ut 70. SCTag(23) 71. SCData(90) 72. SCbData(57)
73. SysAD(57) 74. SCData(25) 75. SysAD(25) 76. SCbData(121)
77. GrpRun* 78. SCTag(24) 79. SCbData(89) 80. SCData(56)
81. SysAD(56) 82. SCbData(24) 83. SysAD(24) 84. SCbData(120)
85. GrpsStall* 86. SCTChk(0) 87. SCData(88) 88. SCDChk(6)
89. SysADC(6) 90. SCDChk(2) 91. SysADC(2) 92. SCDChk(14)
93. NMI* 94. SCTChk(1) 95. SCDChk(10) 96. SCData(55)

MIPS R4000 Microprocessor User's Manual

397

Chapter 14

Table 14-2 (cont.) JTAG Scan Order of R4000 Processor Pins

Pin# Signal Name | Pin# Signal Name [Pin# Signal Name | Pin# Signal Name
97. SysAD(55) 98. SCData(23) 99. SysAD(23) 100. SCData(119)
101. Release* 102. SCTChk(2) 103. SCData(87) 104. SCData(54)
105. SysAD(54) 106. SysAD(22) 107. Modeln 108. SCData(22)
109. RdRdy* 110. SCData(118) 111. SCData(86) 112. SCData(53)
113. SysAD(53) 114. SCData(21) 115. SysAD(21) 116. SCData(117)
117. ExtRgst* 118. SCTChk(3) 119. SCData(85) 120. SCData(52)
121. SysAD(52) 122. SCData(20) 123. SysAD(20) 124. SCData(116)
125. ValidOut* 126. SCTChk(4) 127. SCData(84) 128. SCData(51)
129. SysAD(51) 130. SCData(19) 131. SysAD(19) 132. SCData(115)
133. Validin* 134. SCTChk(5) 135. SCData(83) 136. SCAddrow,X
(share the same
JTAG bit)
137. SCAddroY,z 138. SCAddr(1) 139. SCData(50) 140. SysAD(50)
(share the same
JTAG bit)
141. SCData(18) 142. SysAD(18) 143. SCData(114) 144. Int*(0)
145. SCTChk(6) 146. SCData(82) 147. SCData(49) 148. SysAD(49)
149. SCData(17) 150. SysAD(17) 151. SCData(113) 152. SCAddr(2)/Int*(1)
153. SCAddr(3) 154. SCData(81) 155. SCData(48) 156. SysAD(48)
157. SCData(16) 158. SysAD(16) 159. SCData(112) 160. SCAddr(4)/Int*(2)
161. SCAddr(5) 162. SCData(80) 163. SCAddr(6) 164. SCAddr(7)
165. SCAddr(8) 166. SCAddr(9) 167. SCAddr(10) 168. SCAddr(11)
169. SC64Addr 170. SCAddr(12) 171. SCAddr(13) 172. SCAddr(14)
173. SCAddr(15) 174. SCAddr(16) 175. SCAddr(17) 176. SCData(64)
177. SCAPar(0) 178. SCAPar(1)/Int*(3) 179. SCData(96) 180. SysAD(0)
181. SCData(0) 182. SysAD(32) 183. SCData(32) 184. SCData(65)
185. SCAPar(2) 186. SCOE*/Int*(4) 187. SCData(97) 188. SysAD(1)
189. SCData(1) 190. SysAD(33) 191. SCData(33) 192. SCData(66)
193. SCDCS* 194. SCTCS*/Int*(5) 195. SCData(98) 196. SysAD(2)
197. SCData(2) 198. SysAD(34) 199. SCData(34) 200. SCTag(0)
201. SCWrW,X* (share 202. SCWrY,Z* (share 203. SCData(67) 204. SCTag(1)
the same JTAG bit) the same JTAG bit)
205. SysCmd(0) 206. SCData(99) 207. SysAD(3) 208. SCData(3)
209. SysAD(35) 210. SCData(35) 211. SCData(68) 212. SCTag(2)
213. SysCmd(1) 214. SCData(100) 215. SysAD(4) 216. SCData(4)
217. SysAD(36) 218. SCData(36) 219. SCData(69) 220. SCTag(3)
221. SysCmd(2) 222. SCData(101) 223. SysAD(5) 224. SCData(5)
398 MIPS R4000 Microprocessor User's Manual

JTAG Interface

Table 14-2 (cont.) JTAG Scan Order of R4000 Processor Pins

Pin# Signal Name | Pin# Signal Name [Pin# Signal Name | Pin# Signal Name

225. SysAD(37) 226. SCData(37) 227. SCData(70) 228. WrRdy*

229. ModeClock 230. SCData(102) 231. SysAD(6) 232. SCData(6)

233. SysAD(38) 234. SCData(38) 235. SCData(71) 236. SCTag(4)

237. SysCmd(3) 238. SCData(103) 239. SysAD(7) 240. SCData(7)

241. SysAD(39) 242. SCData(39) 243. SCDChk(8) 244, SCTag(5)

245. SysCmd(4) 246. SCDChk(12) 247. SysADC(0) 248. SCDChk(0)

249. SysADC(4) 250. SCDChk(4) 251. SCData(72) 252. SCTag(6)

253. SysCmd(5) 254. SCData(104) 255. SysAD(8) 256. SCData(8)

257. SysAD(40) 258. SCData(40) 259. SCData(73) 260. SCTag(7)

261. SysCmd(6) 262. SCData(105) 263. SysAD(9) 264. SCData(9)

265. SysAD(41) 266. SCData(41) 267. SCData(74) 268. SCTag(8)

269. SysCmd(7) 270. SCData(106) 271. SysAD(10) 272. SCData(10)

273. SysAD(42) 274. SCData(42) 275. SCData(75) 276. SCTag(9)

277. SysCmd(8) 278. SCData(107) 279. SysAD(11) 280. SCData(11)

281. SysAD(43) 282. SCData(43) 283. SCData(76) 284. SCTag(10)

285. SysCmdP 286. SCData(108) 287. SysAD(12) 288. SCData(12)

289. SysAD(44) 290. SCData(44) 291. SCData(77) 292. SCTag(11)

293. Fault* 294. SCData(109) 295. SysAD(13) 296. SCData(13)

297. SysAD(45) 298. SCData(45) 299. SCTag(12) 300. TClock(1:0) (share
the same JTAG bit)

301. SCData(78) 302. SCTag(13) 303. SCData(110) 304. SysAD(14)

305. SCData(14) 306. SysAD(46) 307. SCData(46) 308. SCData(79)

309. SCTag(14) 310. SCData(111) 311. SysAD(15) 312. SCData(15)

313. SysAD(47) 314. SCData(47) 315. SCDChk(9) 316. SCTag(15)t

tSee the section titled Boundary-Scan Register earlier in this chapter, for a
description of the last three output enable bits, 319:317.

MIPS R4000 Microprocessor User's Manual

399

Chapter 14

14.4 Implementation-Specific Details

This section describes details of JTAG boundary-scan operation that are
specific to the processor.

e The MasterClock, MasterOut, Syncln, and SyncOut signal
pads do not support JTAG.

= The following pairs of output pads share a single JTAG bit:

SCAddrOwW and SCAddrox
SCAddr0Y and SCAddr0z
SCWrW#* and SCWrX*
SCWrY* and SCWrZ*
TClock(0) and TClock(1)
RClock(0) and RClock(1)

« All input pads data are first latched into a processor clock-based
register in the pad cell before they are captured into the
Boundary-scan register in the Capture-DR (Boundary-scan)
state. When the phase-locked loop is disabled, the processor
clock is half the frequency of MasterClock. Therefore, when the
TAP controller is in the Capture-DR (Boundary-scan) state, the
data setup required at the input pads is more than two
MasterClock periods before the rising edge of the JTCK.

< The output enable controls generated from the three most-
significant bits of the Boundary-scan register are latched into a
Processor Clock-based register before they actually enable the
data onto the pads. Therefore, the delay from the rising edge
of JTCK in the Update-DR (Boundary-scan) state to data valid
at the output pins of the chip is greater than two MasterClock
periods.

400 MIPS R4000 Microprocessor User's Manual

R4000 Processor Interrupts

15

The R4000 processor supports the following interrupts: six hardware
interrupts, one internal “timer interrupt,” two software interrupts, and
one nonmaskable interrupt. The processor takes an exception on any
interrupt.

This chapter describes the six hardware and single nonmaskable
interrupts. A description of the software and the timer interrupts can be
found in Chapter 5. CPU exception processing is also described in
Chapter 5.

Floating-point exception processing is described in Chapter 6.

MIPS R4000 Microprocessor User's Manual 401

Chapter 15

15.1 Hardware Interrupts

The six CPU hardware interrupts can be caused by external write requests
to the R4000SC, R4000MC, and R4000PC, or can be caused through
dedicated interrupt pins. These pins are latched into an internal register
by the rising edge of SClock. The R4000MC and R4000SC packages
support a single interrupt pin, Int*(0). The R4000PC package supports six
interrupt pins, Int*(5:0).

15.2 Nonmaskable Interrupt (NMI)

The nonmaskable interrupt is caused either by an external write request to
the R4000 or by a dedicated pin in the R4000. This pin is latched into an
internal register by the rising edge of SClock.

15.3 Asserting Interrupts

External writes to the CPU are directed to various internal resources,
based on an internal address map of the processor. When SysAD[6:4] =0,
an external write to any address writes to an architecturally transparent
register called the Interrupt register; this register is available for external
write cycles, but not for external reads.

During a data cycle, SysAD[22:16] are the write enables for the seven
individual Interrupt register bits and SysAD[6:0] are the values to be
written into these bits. This allows any subset of the Interrupt register to
be set or cleared with a single write request. Figure 15-1 shows the
mechanics of an external write to the Interrupt register.

Interrupt register
SysAD(6:0)
Interrupt Value

See Figures 15-1,
—> 15-2, and 15-3.

22‘21‘20 19‘18 17‘16

SysAD(22:16)
Write Enables

Figure 15-1 Interrupt Register Bits and Enables

402 MIPS R4000 Microprocessor User's Manual

R4000 Processor Interrupts

Figure 15-2 shows how the R4000SC and R4000MC interrupts are readable
through the Cause register.

= Bit 5 of the Interrupt register in the R4000SC and R4000MC is
multiplexed with the TimerlInterrupt signal and the result is
directly readable as bit 15 of the Cause register.

= Bits 4:1 of the Interrupt register are directly readable as bits
14:11 of the Cause register.

= Bit 0 of the Interrupt register is latched into the internal register
by the rising edge of SClock, then ORed with the Int*(0) pin,
and the result is directly readable as bit 10 of the Cause register.

Interrupt register (5:0)

D—IPZS’.

P3 =

P4 RS
——» See Figure 15-5.

IP5 |

IP6 1 S

IP7

Lo
—

Timer Cause
Interrupt register(15:10)

TimerIntDi (Internal D
) OR gate
Int*(0) register) ’

\J

multiplexer
SClock

Figure 15-2 R4000SC/MC Interrupt Signals

The select line for the Timer Interrupt multiplexer is enabled by boot-
mode bit 19, TimerIntDis, as described in Chapter 9. The Timer Interrupt
input to the multiplexer is asserted when the Count register equals the
Compare register.

MIPS R4000 Microprocessor User's Manual 403

Chapter 15

Figure 15-3 shows how the R4000PC interrupts are readable through the
Cause register. The interrupt bits, Int*(5:0), are latched into the internal
register by the rising edge of SClock.

= Bit 5 of the Interrupt register in the R4000PC is ORed with the
Int*(5) pin and then multiplexed with the TimerInterrupt
signal. This result is directly readable as bit 15 of the Cause
register.

= Bits 4:0 of the Interrupt register are bit-wise ORed with the

current value of the interrupt pins Int*[4:0] and the result is
directly readable as bits 14:10 of the Cause register.

Interrupt register (5:0)

_D IP2
-D IP3

—D IP4
‘D IP5
__D IP6

See
Figure 15-5.

- IP7
- Cause
Timer register
Interrupt
Internal OR gate D
SClock—»| 5 4| 3 ‘ 2 1 ‘ 0 Eegister)
multiplexer:D7
Int*(5) Int*(3) Int*(1)
Int*(4) Int*(2) Int*(0)

Figure 15-3 R4000PC Interrupt Signals

404 MIPS R4000 Microprocessor User's Manual

R4000 Processor Interrupts

Figure 15-4 shows the internal derivation of the NMI signal, for all
versions of the R4000 processor.

The NMI* pin is latched by the rising edge of SClock, however the NMI
exception occurs in response to the falling edge of the NMI* signal, and is
not level-sensitive.

Bit 6 of the Interrupt register is then ORed with the inverted value of NMI*
to form the nonmaskable interrupt.

6 I Interrupt register (6)

(Internal
register) NMI

(Internal)
NMI* _D

\J

Edge- D
SClock triggered
Flip-flop Inverter OR gate

Figure 15-4 R4000 Nonmaskable Interrupt Signal

MIPS R4000 Microprocessor User's Manual 405

Chapter 15

Figure 15-5 shows the masking of the R4000 interrupt signal.

= Cause register bits 15:8 (IP7-1P0) are AND-ORed with Status
register interrupt mask bits 15:8 (IM7-1IM0) to mask individual
interrupts.

= Status register bit 0 is a global Interrupt Enable (IE). It is
ANDed with the output of the AND-OR logic to produce the
R4000 interrupt signal.

Status register
SR(0)

Status register
SR(15:8)

IMO
IM1
IM2
IM3 | 8
M4 R~/
IM5

IM6
IM7

1/ 1 , R4000 Interrupt

IPO
IP1

IP2
AND
:Ei 78L> function
IP5
IP6 AND—QR
P7 function
T
Cause register
(15:8)

Figure 15-5 Masking of the R4000 Interrupt

406 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

16

This chapter describes the Error Checking and Correcting (ECC)
mechanism used in both the R4000 and R4400 processors.

This chapter also contains a description of the Master/Checker mode used
in the R4400 processor.

MIPS R4000 Microprocessor User's Manual 407

Chapter 16

16.1 Error Checking in the Processor

ECC code allows the processor to detect and sometimes correct errors
made when moving data from one place to another.
Two major types of data errors can occur in data transmission:

= hard errors, which are permanent, arise from broken
interconnects, internal shorts, or open leads

= soft errors, which are transient, are caused by system noise,
power surges, and alpha particles.

Hard errors must be corrected by physical repair of the damaged
equipment and restoration of data from backup. Soft errors can be
corrected by using error checking and correcting codes.

Types of Error Checking

The processor uses two types of error checking: parity (error detection
only), and single-bit error correction/double-bit error detection
(SECDED).

Parity Error Detection

Parity is the simplest error detection scheme. By appending a bit to the
end of an item of data—called a parity bit—single bit errors can be
detected; however, these errors cannot be corrected.

There are two types of parity:

e Odd Parity adds 1 to any even number of 1s in the data,
making the total number of 1s odd (including the parity bit).

e Even Parity adds 1 to any odd number of 1s in the data,
making the total number of 1s even (including the parity bit).

Odd and even parity are shown in the example below:

Data(3:0) Odd Parity Bit Even Parity Bit
0010 0 1

408 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

The example above shows a single bit in Data(3:0) with a value of 1; this
bit is Data(1).

= In even parity, the parity bit is set to 1. This makes 2 (an even
number) the total number of bits with a value of 1.

= Odd parity makes the parity bit a 0 to keep the total number of
1-value bits an odd number—in the case shown above, the
single bit Data(1).

The example below shows odd and even parity bits for various data

values:
Data(3:0) Odd Parity Bit Even Parity Bit
0110 1 0
00O0O 1 0
1111 1 0
1101 0 1

Parity allows single-bit error detection, but it does not indicate which bit
is in error—for example, suppose an odd-parity value of 00011 arrives.
The last bit is the parity bit, and since odd parity demands an odd number
(1,3,5) of 1s, this data is in error: it has an even number of 1s. However it
is impossible to tell which bitis in error. To resolve this problem, SECDED
ECC was developed.

SECDED ECC Code

The ECC code chosen for processor secondary cache data and tag is single-
bit error correction and double-bit error detection (SECDED) code.”
SECDED ECC code is an improvement upon the parity scheme; not only
does it detect single- and certain multi-bit errors, it corrects single-bit
errors.

t The 64-bit data code is a modification of one of the 64-bit codes proposed by M. Y. Hsiao,
to include the ability to detect 3- and 4-bit errors within a nibble. The 25-bit tag code was
created using the patterns observed in the 64-bit data code.

MIPS R4000 Microprocessor User's Manual 409

Chapter 16

Secondary Cache Data Bus SECDED Code

The SECDED code protecting secondary cache data bus has the properties
listed below:

It corrects single-bit errors.
It detects double-bit errors.
It detects 3- or 4-bit errors within a nibbleT.

It provides 64 data bits protected by 8 check bits, and yields 8-
bit syndromes (the syndrome is a generated value used to detect
an error, and locate the position of the single bit in error).

It is a minimal-length code; each parity tree used to generate
the 8-bit syndrome has only 27 inputs, the minimum number
possible.

It provides byte Exclusive-ORs (XORs) of the data bits as part
of the XOR trees used to build the parity generators. This
allows selection of byte parity out of the XOR trees that
generate or check the code.

Single-bit errors are indicated either by syndromes that contain
exactly three 1s, or by syndromes that contain exactly five 1s
(in which bits 0-3 or bits 4-7 of the syndrome are all 1s).¢

Double-bit errors are indicated by syndromes that contain an
even number of 1s.

3-bit errors within a nibble are indicated by syndromes that
contain five 1s, in which bits 0-3 of the syndrome and bits 4-7
of the syndrome are not all 1s.

4-bit errors within a nibble are indicated by syndromes that
contain four 1s. Because this is an even number of 1s, 4-bit
errors within a nibble look like double-bit errors.

t Anibble is defined here as any group of four bits located within the vertical rules of Figure

16-1.

T This makes it possible to decode the syndrome to find which data bit is in error, using 4-
input NAND gates, provided a pre-decode AND of bits 0-3 and bits 4-7 of the syndrome
is available. For the check bits, a full 8-bit decode of the syndrome is required.

410

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Secondary Cache Tag Bus SECDED Code

The SECDED ECC code protecting the secondary cache tag bus has the
following properties:

It corrects single-bit errors.
It detects double-bit errors.
It detects 3- or 4-bit errors within a nibble.

It provides 25 data bits protected by 7 check bits, yielding 7-bit
syndromes.

It provides byte XORs of the data bits as part of the XOR trees
used to build the parity generators. This allows selection of
byte parity out of the XOR trees that generate or check the
code.

Single-bit errors are indicated by syndromes that contain
exactly three 1s. This makes it possible to decode the
syndrome to find which data bit is in error with 3-input NAND
gates. For the check bits, a full 7-bit decode of the syndrome is
required.

Double-bit errors are indicated by syndromes that contain an
even number of 1s.

3-bit errors within a nibble are indicated by syndromes that
contain either five 1s or seven 1s.

4-bit errors within a nibble are indicated by syndromes that
contain either four 1s or six 1s. Because these are even
numbers of 1s, 4-bit errors within a nibble look like double-bit
errors.

MIPS R4000 Microprocessor User's Manual 411

Chapter 16

Error Checking Operation

The processor verifies data correctness by using either the parity or the
SECDED code as it passes data from the System interface to the secondary
cache, or it moves data from the secondary cache to the primary caches or
to the System interface.

System Interface

The processor generates correct check bits for doubleword, word, or
partial-word data transmitted to the System interface. As it checks for
data correctness, the processor passes data check bits from the secondary
cache, directly without changing the bits, to the System interface if the
interface is set to ECC mode. If the System interface is set to parity mode,
the processor indicates a secondary cache ECC error by corrupting the
state of the SysCmdP signal.

The processor does not check data received from the System interface for
external updates and external writes. By setting the SysCmd(4) bit in the
data identifier, it is possible to prevent the processor from checking read
response data from the System interface.

The processor does not check addresses received from the System
interface, but does generate correct check bits for addresses transmitted to
the System interface.

The processor does not contain a data corrector; instead, the processor
takes a cache error exception when it detects an error based on data check
bits. Software, in conjunction with an off-processor data corrector, is
responsible for correcting the data when SECDED code is employed.

Secondary Cache Data Bus

The 16 check bits, SCDChk(15:0), for the 128-bit secondary cache data bus
are organized as 8 check bits for the upper 64 bits of data, and 8 check bits
for the lower 64 bits of data.

System Interface and Secondary Cache Data Bus

The 8 check bits, SysADC(7:0), for the System interface address and data
bus provide even-byte parity, or are generated in accordance with a
SECDED code that also detects any 3- or 4-bit error in a nibble. The 8 check
bits for each half of the secondary cache data bus are always generated in
accordance with the SECDED code.

412

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Secondary Cache Tag Bus

The 7 check bits, SCTChk(6:0), for the secondary cache tag bus are
generated in accordance with the SECDED code, which also detects any 3-
or 4-bit error in a nibble.

The processor generates check bits for the tag when it is written into the
secondary cache and checks the tag whenever the secondary cache is
accessed.

The processor contains a corrector for the secondary cache tag; the tag
corrector is not in-line for processor accesses due to primary cache misses.
The processor traps when a tag error is detected on a processor access due
to a primary cache miss. Software, using the processor cache management
primitives, is responsible for correcting the tag. When executing the cache
management primitives, the processor uses the corrected tag to generate
write back addresses and cache state.

For external accesses, the tag corrector is in-line; that is, the response to
external accesses is based on the corrected tag. The processor still traps on
tag errors detected during external accesses to allow software to repair the
contents of the cache if possible.

System Interface Command Bus

In the R4000 processor, the System interface command bus has a single
parity bit, SysCmdP, that provides even parity over the 9 bits of this bus.
The SysCmdP parity bit is generated when the System interface is in
master state, but it is not checked when the System interface is in slave
state. In the R4400 processor, input parity is reported through the Fault*

pin.

When the System interface is set to parity mode, the processor indicates a
secondary cache ECC error by corrupting the state of the SysCmdP signal.

MIPS R4000 Microprocessor User's Manual 413

Chapter 16

SECDED ECC Matrices for Data and Tag Buses

The check matrices for data and tags, specifying the distribution of data
and check bits across nibbles, are shown in Figures 16-1 and 16-4.

The data bits in Figure 16-1 correspond to SysAD(63:0), SCData(127:64),
or SCData(63:0). The check bits in Figure 16-1 correspond to
SysADC(7:0), SCDChk(15:8), or SCDChk(7:0).

The check bits in Figure 16-4, shown later in this chapter, correspond to
SCTChk(6:0) and the data bits in Figure 16-4 correspond to SCTag(24:0).

The parity check matrices shown in these two figures generate the ECC
code for a fixed-width data word; they can also locate the data bitin error.
In Figure 16-1, the data word length is 64 bits; in Figure 16-4, the data word
length is 25 bits.

ECC Check Bits

The R4000 processor provides the following check bits: 16 check bits,
SCDChk(15:0), are used for the secondary cache data bus; 7 check bits,
SCTChk(6:0), are used for the secondary cache tag bus; 8 check bits,
SysADC(7:0), are used for the System interface address and data bus; a
single parity bit, SysCmdP, is used for the System interface command bus.

In the R4400 processor, the Fault* pin reports data parity or any ECC
errors received from the System interface during an external update or an
external write. The Fault* pin also reports errors among the address bits
received from the System interface. In each case, the full 64-bit data and 8-
bit ECC are significant. This checking is not affected by the state of the
disable bit [SysCmd(4)] in the data identifier. No exceptions are generated
for these checks.

414 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Data ECC Generation

Each of the 64 data bits and 8 check bits has a unique 8-bit SECDED ECC
check code; this check code is generated by taking the even parity of the
ECC check code for a selected group of data bits. As Figure 16-1 shows,
bit locations are numbered from right to left in ascending order, from data
bit 0 (furthest right) to data bit 63 (furthest left). For example, data bit 0, in
the far right column of Figure 16-1, has an 8-bit check value of 0001 0011,
(Os are represented in this figure by periods, (.), because they are not used
in the calculations).

Figure 16-1 also gives values for the 8 check bits, 7:0. For instance, the 8-
bit SECDED ECC code for check bit 6 is in column 6, near the right hand
edge of Figure 16-1.

Data bit 63 /—N'bb'es—\ Check bit 6 Datahito
checkBit | /| 43 52 | \ 0 ™61
Data Bit deco|55 |5555|55 |5544] 4444| 4444|3335 3333| 3322|2222 2\§22 1111]1111] 11

3210{98 |7654|32 |1098|7654|3210|9876|5432|1008|7654|3210| 9876|5432 10 |9876]54
. e
MsB |27]1112|12. |12 |2 o | Jaoaa|dend) | (T e L
Py FEEEY EURUN ETUN ETUN T D DU U T 1 T N U U T T T EE TR EE TN EO o P
e T o4 P E VN TN o0 D W EE 1 1 DR FN TN R 00 D 0 DO W8 EEEE 1 RO ETOUN CE TR IO S
DSOS - P G T DO DO Y EEEE1 BN EEEE1 EEEE1 BT DY N1 D1 DU E VO EE N E T I
) e FO DT N1 TN P E U E U VO TN R TR A EEE R P EEE 1 KT EE TN AU D T
L P T EE T IR R U1 EET] N T N T PV VT U PO EET T FEE Tt FE T NV IR] AT
vy PR PRV N1 EE TN EEE R P 00 DU N DU TN PR EE R P PO U T P T PO T PPt
tse |27 1l fooalon ol el el (e a1 el a2
Number of
1sin 3333|5511 |3333|5511|3333|3333|3333|3333|3333|3333|3333|3333(3333|3333 5511 | 3333|5511
syndrome?|

Figure 16-1 Check Matrix for Data ECC Code

NOTE: *This row indicates the number of 1s in the generated syndrome for each data
bit in error.

MIPS R4000 Microprocessor User's Manual 415

Chapter 16

As an example of this process, SECDED ECC for Data(63:0) = 0x0000 0000
0000 0001 is generated in the steps below.

1. Find any bits in Data(63:0) having a value of 1.

To determine this, the 16-bit hexadecimal value of 0x0000 0000
0000 0001 must be expanded to its 64-bit binary equivalent before
locating the data bit(s) with a value of 1. In this case, the only 1-
value in 0x0000 0000 0000 0001 is in column 0.

2. Find the check bits in column 0.

They are 0001 0011,

3. Take even parity of check bits 0001 0011,.

ECC Parity (even)
0

MSB (7)
(6)
®)
4)
©)
@
@)
LSB (0)

P P, O O F»r O O O
P B, O O »r O O

4. Thiseven parity value, 0001 0011,, is sent out over the bus as ECC
check bits, ECC(7:0).

416 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

The following example uses data with several 1-value bits: Data(63:0) =
0x0000 0000 0000 0043.

1. Expand the data to its binary equivalent in order to generate the
ECC check bits.

0x0000 0000 0000 0043 has 1s in the last byte only. The last byte
binary value is: 0x43 = 0100 0011,.

column# 7654 3210
0x0043 = 0100 0011 2

Since only columns 0, 1, and 6 have 1s, they are the only columns
that can generate the even parity bits.

2. Using Figure 16-1, generate even parity for the ECC check codes
in columns 0, 1, and 6:

Column 0ECC Column1ECC Column 6 ECC Parity (even)
0 0 0 0
0 0 0 0
0 1 0 1
1 0 0 1
0 0 1 1
0 0 1 1
1 1 0 0
1 1 1 1
3. This parity value, 0011 1100,, is sent out over the ECC(7:0) check
bus.

MIPS R4000 Microprocessor User's Manual 417

Chapter 16

Detecting Data Transmission Errors

The following procedure detects data transmission errors.

1. System A transmits a 64-bit doubleword together with 8 bits of
SECDED ECC (see Figure 16-2).

System A

ECC Generator

System B

—

Data(63:0)

ECC(7:0)

Figure 16-2 Detecting ECC Errors: Transmitting Data and ECC

2. System B receives the data doubleword, together with the byte of
ECC check code.

3. To verify proper transmission of the 64-bit doubleword and 8-bit
ECC check code, system B generates its own 8-bit ECC check code
from the 64-bit doubleword of System A, as shown in Figure 16-3.

4. System B executes an Exclusive-OR (XOR) on the check bits of
System A with its own newly-generated ECC check bits, (see
Figure 16-3). The output of this XOR is called the syndrome.

System B

Data(63:0) ECC Checker I
ECC Generator ECC(7:0) ‘}

System A

Syndrome

Exclusive OR

Figure 16-3 Detecting ECC Errors: Deriving the Syndrome

5. Ifthe syndrome is 0000 0000,, the data System B received, together
with the newly-generated ECC check bits from System B, are the
same as the data and check bits from System A. If the syndrome
is any other value than 0000 0000,, it is assumed either the
received word or the received check bits are in error.

418 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

6.

Using the data in Figure 16-1, it may be possible to correct either
the data bit or check bit in error. Determine if the syndrome is in
Figure 16-1 by counting the number on 1s in the syndrome.

= If the syndrome contains either one, three, or five 1s,
the syndrome is in Figure 16-1. Three or five 1s
indicates that at least one data bitis in error. A single 1
indicates an ECC check bit is in error.

= If the syndrome contains two 1s, a double-bit error has
been detected, located in two consecutive bits of a
nibble. This is not correctable.

= If the syndrome contains four 1s, a 4-bit error has been
detected, located in four consecutive bits of a nibble.
This is not correctable.

If the syndrome is identical to any of the syndromes in the Figure
16-1, the column number of that data or check bit indicates the
location of the bit in error. The bit that is in error is corrected by
inverting its state (a 1 is changed to 0; a 0 is changed to 1).

The following sections show how to use the check matrices in Figure 16-1
for detecting:

single data bit error

single data check bit error

multiple data bit errors (2 consecutive bits in a nibble)
multiple data bit errors (3 consecutive bits in a nibble)
multiple data bit errors (4 consecutive bits in a nibble)

MIPS R4000 Microprocessor User's Manual 419

Chapter 16

Single Data Bit ECC Error

The following procedure detects and corrects a single data bit ECC error.

1.

System A transmits;
Data(63:0) = 0x0000 0000 0000 0000

and
ECC(7:0) check code = 0000 0000,

System B receives the following incorrect data:
Data(63:0) = 0x0000 0000 0000 0001
and
ECC(7:0) check code = 0000 0000,
System B regenerates ECC for the received data. The correct ECC
check code for:
Data(63:0) = 0x0000 0000 0000 0001
is
ECC(7:0) = 0001 0011,
A syndrome is generated by the XOR of the System A check bits,
0000 0000,, and the System B regenerated check bits, 0001 0011,.
The resulting syndrome is 0001 0011,. Since the syndrome has

three 1s, look for the column with three 1s in the parity check
matrix table.

Searching the matrix (Figure 16-1) shows that the syndrome, 0001
0011,, corresponds to data bit 0. This means the state of received
data bit 0 is incorrect.

To correct the error, the system inverts the state of the received
data bit 0 from a value of 1 to 0.

420

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Single Check Bit ECC Error

The following procedure detects and corrects a single check bit ECC error.

1.

System A transmits:
Data(63:0) = 0x0000 0000 0000 0000

and
ECC(7:0) check code = 0000 0000,

System B receives the following incorrect check code:
Data(63:0) = 0x0000 0000 0000 0000

and
ECC(7:0) check code = 0000 0001,
System B regenerates the ECC for the received data. The correct
ECC check code for:
Data(63:0) = 0x0000 0000 0000 0000
is
ECC(7:0) = 0000 0000,
A syndrome is generated by the XOR of the System A check bits,

0000 00015, and the System B regenerated check bits, 0000 0000,.
The resulting syndrome is 0000 0001,.

Since the syndrome has a single 1, it is contained in the check
matrix. Figure 16-1 shows that the syndrome, 0000 0001,,
corresponds to check bit 0. This indicates that the state of the
received check bit 0 is incorrect. To correct the error, the system
inverts the state of the received check bit 0 from a value of 1 to 0.

MIPS R4000 Microprocessor User's Manual 421

Chapter 16

Double Data Bit ECC Errors

The following procedure detects double data bit ECC errors.

1.

4,

System A transmits;
Data(63:0) = 0x0000 0000 0000 0000
and
ECC(7:0) check code = 0000 0000,.
System B receives the following incorrect data:
Data(63:0) = 0x0000 0000 0000 0011
and
ECC(7:0) check code = 0000 0000,

System B regenerates the ECC for the received data. The correct
ECC check code for:
Data(63:0) = 0x0000 0000 0000 0011
is
ECC(7:0) = 0011 0000,
A syndrome is generated by the XOR of the System A check bits,

0000 0000,, and the System B regenerated check bits, 0011 0000,.
The resulting syndrome is 0011 0000,.

The syndrome of two 1s (or an even number of 1s) indicates that a
double-bit error has been detected. Double-bit errors cannot be
corrected.

422

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Three Data Bit ECC Errors

The following procedure detects three data bit errors that occur within a

nibble.
1.

System A transmits:
Data(63:0) = 0x0000 0000 0000 0000

and
ECC(7:0) check code = 0000 0000,
System B receives the following incorrect data:
Data(63:0) = 0x0000 0000 0000 0111
and
ECC(7:0) check code = 0000 0000,

System B regenerates the ECC for the received data. The ECC
check code for:

Data(63:0) = 0x0000 0000 0000 0111
is
ECC(7:0) = 0111 0011,
A syndrome is generated by the XOR of the System A check bits,

0000 0000,, and the System B regenerated check bits, 0111 0011,.
The resulting syndrome is 0111 0011,.

The resulting syndrome has five 1s. Since no four of the 1s are
contained in check bits (7:4) or check bits (3:0), three errors have
occurred within a nibble. Triple-bit errors within a nibble cannot
be corrected.

MIPS R4000 Microprocessor User's Manual 423

Chapter 16

Four Data Bit ECC Errors

The following procedure detects four data bit errors that occur within a

nibble.
1.

System A transmits:
Data(63:0) = 0x0000 0000 0000 0000

and
ECC(7:0) check code = 0000 0000,
System B receives the following incorrect data:
Data(63:0) = 0x0000 0000 0000 1111
and
ECC(7:0) check code = 0000 0000,

System B regenerates the ECC for the received data. The ECC
check code for:

Data(63:0) = 0x0000 0000 0000 1111
is
ECC(7:0) = 1111 0000,
A syndrome is generated by the XOR of the System A check bits,

0000 0000,, and the System B regenerated check bits, 1111 0000,.
The resulting syndrome is 1111 0000,.

Since the resulting syndrome has four 1s (or an even number of
1s), this error is recognized as some variation of a double-bit error.
A 4-bit error within a nibble cannot be corrected.

424

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Tag ECC Generation

The 25-bit tag ECC check matrix is similar to the 64-bit data check matrix;
the main difference is the number of check bits used and the manner in
which the errors are decoded. Figure 16-4 shows the check matrix for the

tag bits.
Check Bit ol 12| 34| 56
. 222 |22 |11 |11 |1111 |11
Data Bit 432 |10 |98 |76 |5432| 1098 | 7654 | 3210
msB|11|.1.. |1... [1... |... 11111 |2... [1... [1...
1301... .1, |.1..|.. 1. [1111 | 1212 | | .1..
ECC 0/ ..2. [2...|...2 |1 .. |.... 1122 |.2.. |..1.
Code (10].1.. |.2.. |..2.|.2.. |2 ..|.2.. 1122 }....
Bits 1301, .. 12 [o L 1111 | 1111
.1 |1 o o o 1 1 111
LsB|14| 11121 | 11.. |12.. |11.. | ... 2| ...1|...1|...1
Number of
1sin 3331 | 3311 | 3311 | 3311 | 3333 | 3333 | 3333 | 3333
syndrome*

Figure 16-4 Check Matrix for the Tag ECC Code

NOTE: *This row indicates the number of 1s in the generated syndrome for each data
bit in error.

MIPS R4000 Microprocessor User's Manual 425

Chapter 16

Summary of ECC Operations

ECC operations are summarized in Tables 16-1 through 16-4.

Table 16-1 Error Checking and Correcting Summary for Internal Transactions

Secondary Primary
Bus Cache to Cache to Uncached Uncached
Primary Secondary Load Store
Cache Cache
Processor or Checked; Primary From Not
Secondary Cache Trap on Error | Cache parity System Checked
Data checked; Trap | Interface
on Error
Secondary Cache Checked; Generated NA NA
Data Check Bits Trap on Error
Secondary Cache Tag | Checked; not | NA NA NA
and Check Bits corrected in
Secondary
cache; Trap on
error
System Interface NA NA Generated Generated
Address/Command
and Check Bits:
Transmit
System Interface NA NA Not NA
Address/Command Checked;
and Check Bits: reported to
Receive the Fault*
pin
System Interface Data | NA NA Checked From
Trap on Processor
error’
System Interface Data | NA NA Checked; Generated
Check Bits Trap on
Error!

T Iferror level (ERL bit of the Status register) is 1, the error is reported to the Fault* pin.

426

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Table 16-2 Error Checking and Correcting Summary for Internal Transactions

Secondary

Store to Cache Cache Load Secondar_y
Bus Shared - Cache Write
. Instruction | from System
Cache Line to System Interface
Interface
Processor or Check on From
Secondary Cache NA cac_he . System Checked; Trap on
writeback; Interface Error
Data
Trap on Error | unchanged
Check on From
Secondary Cache NA cache System Checked; Trap on
Data Check Bits writeback; Interface Error
Trap on Error | unchanged
Checked on Checked:
read part of corrected Checked; not
Secondary Cache Tag | RMW: correct i
) Secondary Generated corrected; Trapon
and Check Bits Secondary .
: cache tag*; Error
cachetag; Trap
Trap on Error
on Error
System Interface
Address, CO‘_“’T"”‘”O" Generated Generated Generated Generated
and Check Bits:
Transmit
System Interface
Address, Command, Not
and Check Bits: NA NA Checked NA
Receive
From Primary | Checked,;
From From Secondary
System Interface Data or Secondary | Trap on
Processor " Cache
Cache Error
From Secondary
From Primary | Checked; Qache (SysCmdP
System Interface Data signal corrupted
. Generated or Secondary | Trap on -
Check Bits " if System
Cache Error

interface set to
parity mode)

T Read-Modify-Write cycle
t Iferror level (ERL bit of the Status register) is 1, the error is reported to the Fault* pin.
* Only if the current CACHE op needs to modify and write back the tag.

MIPS R4000 Microprocessor User's Manual

427

Chapter 16

Table 16-3 Error Checking and Correcting Summary for External Transactions

BUS Read Write Invalidate Update
Request Request Request Request
Processor or Checked on read
Secondary Cache NA NA Not Checked | part of RMW;
Data Trap on Error?
Checked on read
part of RMW;
Secondary Cache Trap on Error;
Data Check Bits NA NA Not Checked Generation on
write part of
RMW if written
Checked on
read part of | Checked on read
RMWT; Trap | part of RMWT;
Secondary Cache Tag NA NA on Error¥; Trap on Error;
and Check Bits Generation Generation on
on write part | write part of
of RMW if RMW if written
written
System Interface
Address, Command
and Check Bits: Generated NA NA NA
Transmit
System Interface Not Not
Y Checked,; Checked,; NotChecked; | Not Checked;
Address, Command
and Check Bits: reported to | reportedto | reported to reported to the
. ' the Fault* the Fault* | the Fault* pin | Fault* pin
Receive . .
pin pin
From Checked; Not Checked;
System Interface Data Trap on Not Checked | reported to the
Processor .
Error Fault* pin
System Interface Data Checked, Not Checked,
Y . Generated Trap on Not Checked | reported to the
Check Bits .
Error Fault* pin

T Read-Modify-Write cycle
T Only the pair of doublewords accessed on the read portion of RMW is checked.

428

MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Table 16-4 Error Checking and Correcting Summary for External Transactions

Bus

Intervention Request
Data Returned

Intervention Request
State Returned

Snoop Request

Processor or

Checked; Trap on

Data Check Bits

Error

Secondary Cache Not Checked Not Checked
Error

Data

Secondary Cache Checked; Trap on Not Checked Not Checked

Secondary Cache Tag
and Check Bits

Checked and
corrected on read
part of RMWT; Trap
on Error;
Generation on write
part of RMW if

Checked and
corrected on read part
of RMWT; Trap on
Error; Generation on
write part of RMW if
written.

Checked and
corrected on
read part of
RMW':

Trap on Error;
Generation on
write part of

Check Bits

Cache

written. RMW if
written.
System Interface
Address, Command,
and Check Bits: Generated Generated Generated
Transmit
System Interface Not Checked; Not Checked; Not Checked;
Address, Command,
o reported to the reported to the Fault* | reported to the
and Check Bits: . - .
. Fault* pin pin Fault* pin

Receive

From Secondary
System Interface Data NA NA

Cache
System Interface Data | From Secondary NA NA

T Read-Modify-Write cycle

MIPS R4000 Microprocessor User's Manual

429

Chapter 16

16.2 R4400 Master/Checker Mode

The R4400 processor supports four Master/Checker mode configurations,
which are designated by boot-mode bit settings: Complete Master,
Complete Listener, System Interface Master, and Secondary Cache Master.
The boot-mode bits, SIMasterMd (mode bit 18) and SCMasterMd (mode
bit 42), define Master/Checker configurations. Table 16-5 lists the
configurations encoded by these bits.

Table 16-5 Boot-Mode Bit Encodings of Master/Checker Modes

SCMasterMd | SIMasterMd Mode
(Bit 42) (Bit 18)

0 0 Complete Master
(required for single-chip operation)

1 1 Complete Listener
(paired with Complete Master)

1 0 System Interface Master
(SIMaster)

0 1 Secondary Cache Master
(SCMaster, paired with SIMaster)

For a non-fault tolerant system, these bits must be set to 00,. This is the
Complete Master mode.

In a fault tolerant system, there are two possible configurations using the
Master-Listener and Cross-Coupled modes described in Table 16-5. These
are referred to as lock-step configurations, and are described later in this
section.

430 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Connecting a System in Lock Step

By operating in lock step, a system with more than one R4400 processor
can be configured to improve data integrity. In such a configuration,
output signals and 1/0 buses used during output are connected in parallel
between the processors. One processor is defined at boot time as a bus
driver, and the remaining processor(s) is defined as a bus monitor.
Starting with the assertion of Reset*, all microprocessors must be
synchronous, and execute identical operations on a cycle-by-cycle basis.
The processor(s) designated as bus monitor compares the outputs and
buses at bus-cycle boundaries, and asserts the Fault*" signal on any
mismatch.

In a lock step operation, the following R4400 signal groups are connected
in parallel:

« System interface
= Secondary Cache interface (R4400SC and R4400MC only)
e Interrupt interface

The following signals are not connected in parallel:

< [|nitialization interface, ModeClock, Modeln, and Reset*
signals

= JTAG interface signals, JTDO and JTMS
« all Clock/Control interface signals except VssP and VccP

The remaining processor signals can be connected either in parallel or
independently.

t Fault* is a non-persistent signal which is synchronous with the System interface. Fault*
signal timing is determined by the PClock-to-SClock divisor from boot-time mode bit
settings.

MIPS R4000 Microprocessor User's Manual 431

Chapter 16

Master-Listener Configuration

As shown in Figure 16-5, the Master-Listener lock step configuration pairs
a Complete Master (mode bits 42 and 18 = 00,) with a Complete Listener
(mode bits 42 and 18 = 11,). In this configuration, the Complete Listener
has disabled output drivers; otherwise, the two R4400 processors operate
identically, both receiving the same inputs. On all output cycles, the
Complete Listener compares data on the output and 1/0 buses with
expected data, and asserts the Fault* signal in the event of a
miscomparison.

R4400
Secondary cache bus
Complete
System Interface bus MasteL> SCAddr
gySéD/ : schata/
yst-m SCTlag =
SysADC/
S:YSC dP= Datg Chk/ § | Y
sCm
Y Tag|Chk Secondary cache
External [SysAD/
<—d> SCData/
Agent SysCm "__>SCTag
:SySADC/ - SCAddr - Data Chk/
SysCmdP Tag Chk
R4400
Fault* Complete Listener
=?
SysAD/
SysCmd =?
- SCData/
= T
SysADC/ | — SCTag
SysCmdP|™ !
— Data Chk/
) Tag Chk

Maintenance
Fault* Processor

Figure 16-5 Master-Listener Configuration of Master/Checker Mode

432 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Cross-Coupled Checking Configuration

In the Cross-Coupled Checking configuration, one of the R4400 processors
drives the data bus pins and is labelled the System Interface Master (mode
bits 42 and 18 = 10,). The other R4400 processor drives the ECC or parity
check pins on the same bus and is labelled the Secondary Cache Master
(mode bits 42 and 18 = 01,). This is shown in Figure 16-6.

Both processors monitor the buses and indicate a miscomparison by
asserting their respective Fault* signals. The Fault* signal indicates error
conditions not specifically covered by R4400 processor exceptions.T

SCData/

R4400
System Interface bus S| Master
SysAD/ | =2
SysCmd |
SysADC/
SysCmdpP || =2 =?
SysAD/
External SysCmd Address| =
Agent
SysADC/ | | "
- SysCmdP ™ Fault
R4400
Fault* SC Master
SysAD/
SysCmd
_ SysADC/ |
— SysCmdP

Tag Chk

SCTag
Data Chk/ |

Secondary cache bus

Secondary cache

SCData/

> SCTag
_ Data Chk/

™ Tag Chk

SCAddres T

Maintenance
Processor

Figure 16-6 Cross-Coupled Configuration of Master/Checker Mode

T This includes such errors as an input parity error at SysCmd.

MIPS R4000 Microprocessor User's Manual

433

Chapter 16

The signals that are connected in parallel and driven from the System
Interface Master (1 in Figure 16-6) include:

e SysAD(63:0)
< SysCmd(8:0)
e SCAPar(2:0)

Signals that are connected in parallel and driven from the Secondary
Cache Master (2 in Figure 16-6) include:

e SysADC(7:0)

e SysCmdP
e ValidOut*
e Release*

e SCAddr(17:1)
e SCAddro(w:2)
e SCOE*

e SCWr(W:.2)*

e SCData(127:0)
e SCDChk(15:0)
e SCTag(24:0)

e SCTChk(6:0)

- SCDCs*

e SCTCs*

It should be noted that the fault detection mechanism associated with the
Fault* pin does not cause any exceptions; the processor continues to run
normally regardless of the state of the Fault* signal. It is up to external
logic to handle an asserted Fault* signal.

434 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Fault Detection

Fault detection of an output miscomparison occurs at the end of the bus
cycle (the length of the cycle is programmed at boot-mode time; see
Chapter 9). When the R4400 processor is in master state, outputs at the
System interface are checked at the end of every System interface cycle. At
the Secondary Cache interface, outputs are checked at the end of each read
or write cycle.

SCAPar(2:0) transition and check times are delayed from the rest of the
Secondary Cache interface by one PClock. SCAPar(2:0) transitions occur
one PClock after SCAddr transitions, or when the R4400 is changing from
a read cycle to a write cycle without an address change. SCAPar(2:0)
signals do not follow the timing of SCWr* signals, which are set separately
through the programming of the boot-time mode bits.

The R4400 processor has an internal fault detection latency of 4 PClocks
(clock cycles are described in Chapter 10), whereupon Fault* is
synchronized with the System interface. An output fault detected and
propagated through the R4400 processor internal fault logic in a prior
System interface cycle is reported in the current cycle.

In Complete Master mode, output fault reporting is disabled for the
Secondary Cache interface, but enabled for the following System interface
signals: SysCmd, SysCmdP, SysAD, SysADC, ValidOut*, and Release*.

MIPS R4000 Microprocessor User's Manual 435

Chapter 16

Reset Operation

When the R4400 processor is a Complete Listener, SIMaster, or SCMaster,
an assertion of Reset* after the initial boot sequence is significant.

If Reset* is asserted a second time and subsequently deasserted, the R4400
processor changes to Forced Complete Master mode and drives all
outputs.

If Reset* is asserted and deasserted a third time, the R4400 processor
returns to its prior mode, as programmed by the boot-mode bits.

On any subsequent assertion and deassertion of Reset*, the processor
alternates between the two modes described above: the mode determined
by boot-time mode bits if the Master/Checker mode is Complete Listener,
SIMaster, or SCMaster, or Forced Complete Master mode.

In Forced Complete Master mode, the Fault* pin reports all output faults,
not just faults of the System interface as are reported in Complete Master
mode.

Fault History

Two internal fault history bits, Output Fault History and Input Fault
History, record output faults and certain input faults reported through the
Fault* pin. These bits are cleared with each deassertion of Reset*.

The two fault history bits are readable when Reset* is asserted, and the
Fault* pin changes from reporting live faults to indicating which fault
history bit was set when Reset* was deasserted in the previous cycle. The
Modeln pin acts as selector; if Modeln = 0, Fault* indicates the inverted
state of the Output fault history bit. If Modeln = 1, Fault* indicates the
inverted state of the Input fault history bit.

The fault history bits can be reset (cleared) while the R4400 processor is
running by asserting 1 to the Modeln pin. Consequently, Modeln must
be held to 0 to maintain the status of the fault history bits. Table 16-6
presents this information in tabular form.

436 MIPS R4000 Microprocessor User's Manual

Error Checking and Correcting

Table 16-6 R4400 Fault History Bit Encoding

Boot/Reset . Fault History . D Master/Checker
Controls Modeln Pin Bits Fault* Pin Mode
Used as
VccOKk justasserted bpo.t—mode N/A N/A N/A
(goes from 0 to 1) bits; scan
data
Reset* just
deasserted (goes N/ZA Clearedto 0 N/ZA N/A
from 0 to 1)
Reset* deasserted Set and latched, | Live faults are
. : 0 . N/A
in normal operation if fault occurs reported
" -
_Reset deasserteq 1 Cleared Live faults are N/A
in normal operation reported
Changed,
toggling
Reset* just asserted between mode
(goes from 1 to 0) N/A N/A N/A bits and Forced
Complete
Master
Output Fault
Reset* just asserted History bit is
(R4400 is reset) 0 connected to the N/A N/A
Fault* pin
Input Fault
Reset just asserted History bit is
(R4400 is reset) 1 connected to N/A N/A
Fault* pin

MIPS R4000 Microprocessor User's Manual

437

Chapter 16

438 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

This appendix provides a detailed description of the operation of each
R4000 instruction in both 32- and 64-bit modes. The instructions are listed
in alphabetical order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

MIPS R4000 Microprocessor User's Manual A-1

Appendix A

A.l Instruction Classes

CPU instructions are divided into the following classes:

Load and Store instructions move data between memory and
general registers. They are all I-type instructions, since the
only addressing mode supported is base register + 16-bit
immediate offset.

Computational instructions perform arithmetic, logical and
shift operations on values in registers. They occur in both
R-type (both operands are registers) and I-type (one operand is
a 16-bit immediate) formats.

Jump and Branch instructions change the control flow of a
program. Jumps are always made to absolute 26-bit word
addresses (J-type format), or register addresses (R-type), for
returns and dispatches. Branches have 16-bit offsets relative to
the program counter (I-type). Jump and Link instructions save
their return address in register 31.

Coprocessor instructions perform operations in the
coprocessors. Coprocessor loads and stores are I-type.
Coprocessor computational instructions have coprocessor-
dependent formats (see the FPU instructions in Appendix B).
Coprocessor zero (CP0) instructions manipulate the memory
management and exception handling facilities of the processor.

Special instructions perform a variety of tasks, including
movement of data between special and general registers, trap,
and breakpoint. They are always R-type.

A-2

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

A.2 Instruction Formats

Every CPU instruction consists of a single word (32 bits) aligned on aword
boundary and the major instruction formats are shown in Figure A-1.

[-Type (Immediate)
31 26 25 21 20 16 15 0
op rs rt immediate

J-Type (Jump)
31 26 25 0
op target

R-Type (Register)

31 2625 21 20 16 15 1110 65 0
op rs rt rd | shamt |funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) or branch condition

16-bit immediate, branch displacement or address

immediate displacement

target 26-bit jump target address

rd 5-bit destination register specifier
shamt 5-bit shift amount

funct 6-bit function field

Figure A-1 CPU Instruction Formats

MIPS R4000 Microprocessor User's Manual A-3

Appendix A

A.3 Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as rs,
rt, immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at
the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section describes
the operation performed by each instruction using a high-level language
notation. The R4000 can operate as either a 32- or 64-bit microprocessor
and the operation for both modes is included with the instruction
description.

Special symbols used in the notation are described in Table A-1.

A-4

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Table A-1 CPU Instruction Operation Notations

Symbol Meaning
- Assignment.
Il Bit string concatenation.
xY Replication of bit value xinto a y-bit string. Note: x is always a single-bit value.
X.. Selection of bits y through z of bit string x. Little-endian bit notation is always
vz used. If yis less than z, this expression is an empty (zero length) bit string.
+ 2's complement or floating-point addition.
- 2's complement or floating-point subtraction.
. 2's complement or floating-point multiplication.
div 2's complement integer division.
mod 2's complement modulo.
/ Floating-point division.
< 2’s complement less than comparison.
and Bit-wise logical AND.
or Bit-wise logical OR.
xor Bit-wise logical XOR.
nor Bit-wise logical NOR.

GPR[A] General-Register x. The content of GPR[0] is always zero. Attempts to alter
the content of GPR[0] have no effect.

CPR[z,X] Coprocessor unit z, general register x.

CCR[z,X] Coprocessor unit z, control register x.

COC[Z7] Coprocessor unit z condition signal.

BigEndianMem | Big-endian mode as configured atreset (0 — Little, 1 — Big). Specifies the en-
dianness of the memory interface (see LoadMemory and StoreMemory), and
the endianness of Kernel and Supervisor mode execution.

ReverseEndian | Signal to reverse the endianness of load and store instructions. This feature is
available in User mode only, and is effected by setting the RE bit of the Status
register. Thus, ReverseEndian may be computed as (SRy5 and User mode).

BigendianCPU | The endianness for load and store instructions (0 — Little, 1 — Big). In User
mode, this endianness may be reversed by setting SR,5. Thus, BigendianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET
and /nvalidate and read by SC.

T+i Indicates the time steps between operations. Each of the statements within a
time step are defined to be executed in sequential order (as modified by con-
ditional and loop constructs). Operations which are marked T+i: are executed
at instruction cycle j relative to the start of execution of the instruction. Thus,
an instruction which starts at time j executes operations marked T+i: at time
i + j. The interpretation of the order of execution between two instructions or
two operations which execute at the same time should be pessimistic; the or-
der is not defined.

MIPS R4000 Microprocessor User's Manual A-5

Appendix A

Instruction Notation Examples

The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[f] ~ immediate || 06

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General-Purpose Register rt.

Example #2:

(immediate;5)!° || immediate;s o

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

A-6 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

A.4 Load and Store Instructions

In the R4000 implementation, the instruction immediately following a
load may use the loaded contents of the register. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

Two special instructions are provided in the R4000 implementation of the
MIPS ISA, Load Linked and Store Conditional. These instructions are
used in carefully coded sequences to provide one of several
synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A-2 are
used to summarize the handling of virtual addresses and physical

memory.

Table A-2 Load and Store Common Functions

Function

Meaning

AddressTranslation

Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

MIPS R4000 Microprocessor User's Manual A-7

Appendix A

As shown in Table A-3, the Access Type field indicates the size of the data
item to be loaded or stored. Regardless of access type or byte-numbering
order (endianness), the address specifies the byte which has the smallest
byte address in the addressed field. For a big-endian machine, this is the
leftmost byte and contains the sign for a 2’s complement number; for a
little-endian machine, this is the rightmost byte.

Table A-3 Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of

the address.

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

A.5 Jump and Branch Instructions

All jump and branch instructions have an architectural delay of exactly
one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction
during a delay slot, the hardware sets the EPC register to point at the jump
or branch instruction that precedes it. When the code is restarted, both the
jump or branch instructions and the instruction in the delay slot are
reexecuted.

Because jump and branch instructions may be restarted after exceptions or
interrupts, they must be restartable. Therefore, when a jump or branch
instruction stores a return link value, register 31 (the register in which the
link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and
Link Register instruction must use a register whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

MIPS R4000 Microprocessor User's Manual A-9

Appendix A

A.6 Coprocessor Instructions

Coprocessors are alternate execution units, which have register files
separate from the CPU. The MIPS architecture provides four coprocessor
units, or classes, and these coprocessors have two register spaces, each
space containing thirty-two 32-bit registers.

= The first space, coprocessor general registers, may be directly
loaded from memory and stored into memory, and their
contents may be transferred between the coprocessor and
processor.

= The second space, coprocessor control registers, may only have
their contents transferred directly between the coprocessor and
the processor. Coprocessor instructions may alter registers in
either space.

A.7 System Control Coprocessor (CP0) Instructions

There are some special limitations imposed on operations involving CPO
that is incorporated within the CPU. Although load and store instructions
to transfer data to/from coprocessors and to move control to/from
coprocessor instructions are generally permitted by the MIPS architecture,
CPO is given a somewhat protected status since it has responsibility for
exception handling and memory management. Therefore, the move to/
from coprocessor instructions are the only valid mechanism for writing to
and reading from the CPO registers.

Several CPO0 instructions are defined to directly read, write, and probe TLB
entries and to modify the operating modes in preparation for returning to
User mode or interrupt-enabled states.

A-10 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

ADD Add ADD
31 26 25 21 20 16 15 11 10 6 0
SPECIAL rs rt rd 0 ADD
0000O0O0 00000 100000
6 5 5 5 5 6
Format:
ADD rd,rs, rt
Description:

Operat

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2's
complement overflow). The destination register rd is not modified when

an integer overflow exception occurs.

ion:

32 T

64 T:

GPR[rd] —GPR]rs] + GPR[r]

temp « GPR[rs] + GPR]rt]
GPRIrd] - (tempz;)®? || tempz; g

Exceptions:

Integer overflow exception

MIPS R4000 Microprocessor User's Manual

A-11

Appendix A

ADDI

Add Immediate

ADDI

31 26 25 21 20 16 15 0
ADDI s rt immediate
001000
6 5 5 16
Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

Operation:

32 T:

64 T:

GPR [rt] — GPR[rs] +(immediate;5)*® | | immediate;s o

temp — GPR][rs] + (immediate;5)*® | | immediate;s ,

GPRIr] (temps;)®? || tempay g

Exceptions:

Integer overflow exception

A-12

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

ADDIU

Add Immediate Unsigned

ADDIU

31 26 25 21 20 16 15 0
ADDIU rs rt immediate
001001
6 5 5 16
Format:
ADDIU rt, rs, immediate
Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. In 64-bit

mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is
that ADDIU never causes an overflow exception.

Operation:
32 T: GPR[r] — GPR][rs] + (immediate;5)'® || immediate;s o
64 T: temp « GPR|rs]+ (immediate15)48 | | immediate s g
GPRIrt] (temp31)** || tempa; o
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-13

Appendix A

ADDU

Add Unsigned

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format:
ADDU rd, rs, rt
Description:
The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. In 64-bit mode,
the operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the ADD instruction is
that ADDU never causes an overflow exception.
Operation:
32 T: GPR[rd] - GPR[rs] + GPR]rt]
64 T:. temp — GPRJrs] + GPRJrt]
GPRIrd] (temps1)* || tempas o
Exceptions:
None
A-14 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

AND And AND

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 AND
(ONONONONON0) 00000 100100
6 5 5 5 5 6
Format:
AND rd, rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical AND operation. The resultis placed
into general register rd.

Operation:

32 T: GPR[rd] -« GPR[rs] and GPR]rt]

64 T. GPR[rd] — GPR[rs] and GPR[r]

Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-15

Appendix A

ANDI And Immediate AND

31 26 25 21 20 16 15 0
ANDI rs rt immediate
001100
6 5 5 16
Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical AND operation. The resultis placed
into general register rt.

Operation:

32 T: GPRIr] — 0| (immediate and GPRIrs];s. o)

64 T. GPR[rt] — 0%|| (immediate and GPR[rs];5_ o)

Exceptions:
None

A-16 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCzF Branch On Coprocessor z False BCz

31 26 25 21 20 16 15 0
COPz BC BCF offset
0100xx* 01000 00000
6 5 5 16
Format:
BCzF offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If coprocessor z’s condition signal (CpCond), as sampled
during the previous instruction, is false, then the program branches to the
target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition — not COC[z]
T: target — (offset;s)** || offset || 02
T+1: if condition then
PC ~ PC + target

endif

64 T-1: condition — not COC[z]
T: target — (offset;s)*® || offset || 02
T+1: if condition then
PC — PC + target
endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-17

Appendix A

BCZ I: Branch On Coprocessor z False BCZF

(continued)

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCZF Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0

Bcor|9(1/0{0/0|0|0|1/0/0 |0|0|0|0|O0|O

Bit# 3130 29 28 27 26 2524 2322 2120 1918 17 16 0
o/1/ojo|o|1|o|1|0/0|0|0|0|0O]|O|O

BC1F
Bit# 3130 29 28 27 26 2524 2322 2120 19 18 17 16 0
scop| 0] 1/ 0|0 |1]0fo|1|0fo|0j0|0|0|0]|O

o d N e
pcode BC sub-opcode Branch condition
Coprocessor Unit Number

A-18 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCzFL

Branch On Coprocessor z

BCzFL

False Likely
31 26 25 21 20 16 15 0
COPz BC BCFL offset
0100xx* 01000 00010
6 5 5 16
Format:

BCzFL offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is false, the target address is

branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay

slot is nullified.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual

A-19

Appendix A

BCzFL

Branch On Coprocessor z
False Likely
(continued)

Operation:

BCzFL

32
T.

64

T+1:

T-1: condition — not COCJz]

target — (offset;5)'# || offset || 02
if condition then

PC ~ PC + target
else

endif

NullifyCurrentinstruction

: condition — not COC[z]

target — (offset;5)*® || offset || 02
if condition then
PC ~ PC + target

NullifyCurrentinstruction

else

endif

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL Bit# 31302928 27 26 2524 2322 21201918 17 16

BCOFL

0

1,0/0|0|0|O0O}|1|0|0]|0O]|O

0

0j1|0

Bit# 31

30 29 28 27 26 25 24 23 22

21 2019 18

17 16

BC1FL

0

1/0(0|0|1]0

1/0/0 |00

0

010

Bit# 3130 29 28 27 26 25

24 23 22

21201918 17 16

BC2FL

0

1/0/{0|1]0|0O|1|0|0 0|0

0

0/1|0

A

_J

Opcode s

e

Coprocessor Unit Number ——

BC sub-opcode Branch condition

A-20

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCzT Branch On Coprocessor z True BCzT

31 26 25 21 20 16 15 0
COPz BC BCT offset
0100xx* 01000 00001
6 5 5 16
Format:
BCzT offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the coprocessor z’s condition signal (CpCond) is true,
then the program branches to the target address, with a delay of one
instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition — COCJz]
T: target — (offsetys) || offset || 02
T+1: if condition then
PC «~ PC + target
endif
64 T-1: condition — COCJz]
T: target — (offset;s)*® || offset || 02
T+1: if condition then
PC — PC + target
endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-21

Appendix A

BCZT Branch On Coprocessor z True BCZT

(continued)

Exceptions:

Coprocessor unusable exception
Opcode Bit Encoding:

BCZT Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0
0/1/0/0/0|0|0O|1|0|0O|0O|0O|0O|0O|O|1

BCOT
Bit# 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0
1/0/0|0|1|0|1|0|0O|0O|0O|0O|O0O]O|12

BciT| ©
Bit# 3130 29 28 27 26 25 24 2322 21201918 17 16 0

1/0/{0|12]0|0|2|0|0O|0|0O|0O|0O]|O0]|12
N _/

Opcode BC sub-opcode Branch condition
Coprocessor Unit Number

Bc2T| ©

A-22 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BCZTL Branch On Coprocessor z BCZTL

True Likely
31 26 25 21 20 16 15 0
COPz BC BCTL offset
0100xx* 01000 00011
6 5 5 16
Format:
BCzTL offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.
If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.
Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.
Operation:

32 T-1: condition —~ COCJZ]
T: target — (offset;s)* || offset || 02
T+1: if condition then

64 T-1:. condition - COCJZ]
T: target — (offset;5)*9|| offset || 02
T+1: if condition then

PC ~ PC + target
NullifyCurrentinstruction

else

endif

PC « PC + target
NullifyCurrentinstruction

else

endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-23

Appendix A

BCZTL Branch ?_pugtl)_ﬁ)lzgﬁ/essor z BCZTL

(continued)

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL Bit# 3130 29 28 27 26 25 24 23 22 2120 19 18 17 16 0
BcoTL| 0| 1| 0/0|0|00|1|0/0|0|0[0|0|1|1
Bit# 3130 29 28 27 26 2524 2322 21 20 1918 17 16 0
sc1TL| 0| 1/ 0/0|0|1/0|1|0l0|0|0[0|0O|1|1
Bit# 3130 29 28 27 26 2524 2322 21201918 17 16 0
scoTL| 0] 1|00 |1{0 0|1 0/0|0|0|0|0O|1]1

H—/Hf/\ N /
N e
Opcode BC sub-opcode Branch condition
Coprocessor Unit Number

A-24 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BEQ

Branch On Equal

BEQ

31 26 25 21 20 16 15
BEQ rs rt offset
000100
6 5 5 16
Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of

general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction.

Operation:
32 T: target — (offset;5)'*|| offset || 02
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs] = GPR]rt])
T+1: if condition then
PC — PC + target
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-25

Appendix A

BEQL Branch On Equal Likely BEQL

31 26 25 21 20 16 15 0
BEQL rs rt offset
010100
6 5 5 16
Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target — (offset;5)'* || offset || 02
condition —~ (GPR][rs] = GPR]rt])
T+1: if condition then
PC — PC + target

NullifyCurrentinstruction

else

endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR][rs] = GPRJrt])
T+1: if condition then

PC — PC + target
else

NullifyCurrentinstruction
endif

Exceptions:

None

A-26 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BGEZ

Branch On Greater Than
Or Equal To Zero

BGEZ

31 26 25 21 20 16 15 0
REGIMM rs BGEZ offset
000001 00001
6 5 5 16

Format:
BGEZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.

Operation:

32 T: target — (offset;c)'* || offset || 02

condition — (GPR][rs]z; = 0)

T+1: if condition then

64 T:

PC « PC + target
endif
target — (offset;5)*® || offset || 02
condition — (GPR[rs]g3z = 0)

T+1: if condition then

PC ~ PC + target
endif

Exceptions:

None

MIPS R4000 Microprocessor User's Manual

A-27

Appendix A

BGEZAL

Branch On Greater Than
Or Equal To Zero And Link

BGEZAL

31 26 25 21 20 16 15 0
REGIMM rs BGEZAL offset
000001 10001
6 5 5 16
Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the

target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however.

Operation:

32 T

64 T:

T+1:

T+1:

target — (offset;5)*|| offset || 02
condition —~ (GPR]rs]3; = 0)
GPR[31] - PC+8
if condition then

PC ~ PC + target
endif
target — (offset;5)*® || offset || 02
condition — (GPR]rs]g3 = 0)
GPR[31] - PC+8
if condition then

PC — PC + target
endif

Exceptions:

None

A-28

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Branch On Greater Than

BG EZAL Or Equal To Zero

And Link Likely

BGEZALL

31 26 25 21 20 16 15 0
REGIMM rs BGEZALL offset
000001 10011
6 5 16
Format:

BGEZALL rs, offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is

nullified.
Operation:
32 T: target — (offset;5)'* || offset || 02
condition — (GPR][rs]3; =0)
GPR[31] -« PC +8
T+1: if condition then
PC ~ PC +target
else . .
NullifyCurrentinstruction
endif
64 T: target — (offset;s)*® || offset || 02
condition — (GPR][rs]gz = 0)
GPR[31] - PC +8
T+1: if condition then
PC ~ PC + target
else : .
NullifyCurrentinstruction
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-29

Appendix A

BGEZL

Branch On Greater
Than Or Equal To Zero Likely

BGEZL

31 26 25 21 20 16 15 0
REGIMM rs BGEZL offset
000001 00011
6 5 5 16
Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation:

32 T

64 T

T+1:

T+1:

target — (offset;5)* || offset || 02
condition —~ (GPR]rs]z; = 0)
if condition then

PC ~ PC + target
else

NullifyCurrentinstruction
endif

target — (offset;s)*® || offset || 02
condition — (GPR][rs]g3 = 0)
if condition then
PC ~ PC + target
else

NullifyCurrentinstruction
endif

Exceptions:

None

A-30

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BGTZ

Branch On Greater Than Zero

BGTZ

31 26 25 21 20 16 15 0
BGTz rs 0 offset
000111 00000
6 5 5 16
Format:
BGTZ rs, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction.
Operation:
32 T: target — (offset;5)'*|| offset || 02
condition — (GPR[rs]3; = 0) and (GPR(rs] # 0%2)
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR]rs]g3 = 0) and (GPR[rs] # 0%%)
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-31

Appendix A

BGTZL

Branch On Greater
Than Zero Likely

BGTZL

31 26 25 21 20 16 15 0
BGTZL rs 0 offset
010111 00000
6 5 5 16
Format:
BGTZL rs, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.
Operation:
32 T: target — (offset;g)'* || offset || 02
condition — (GPR[rs]3; = 0) and (GPR[rs] # 0%?)
T+1: if condition then
PC —~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs]g3 = 0) and (GPR[rs] # 054
T+1: if condition then
PC — PC + target
else
NullifyCurrentinstruction
endif
Exceptions:
None
A-32 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BLEZ

Branch on Less Than
Or Equal To Zero

BLEZ

31 26 25 21 20 16 15 0
BLEZ rs 0 offset
000110 00000
6 5 5 16
Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one

instruction.

Operation:

32 T

64 T

T+1:

T+1:

target — (offset;s)1* || offset || 02

condition — (GPR[rs]3; = 1) or (GPR(rs] = 0%?)

if condition then
PC — PC + target

endif

target — (offset;5)*® || offset || 02

condition — (GPR[rs]gz = 1) or (GPR]rs] = 0%

if condition then
PC —~ PC + target

endif

Exceptions:

None

MIPS R4000 Microprocessor User's Manual

A-33

Appendix A

BLEZL

Branch on Less Than
Or Equal To Zero Likely

BLEZL

31 26 25 21 20 16 15 0
BLEZL rs 0 offset
010110 00000
6 5 5 16
Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs is compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

32 T

64 T:

T+1:

T+1:

target — (offset15)14 || offset || 02
condition — (GPR]rs]z; = 1) or (GPR]rs] = 032)
if condition then
PC — PC + target
else
NullifyCurrentinstruction
endif
target (offset;5)*® || offset || 02
condition — (GPR[rs]gz = 1) or (GPR]rs] = 064
if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

A-34

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BLTZ

Branch On Less Than Zero

BLTZ

31 26 25 21 20 16 15 0
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format:

BLTZ rs, offset

Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one

target — (offset;5)** || offset || 02

condition — (GPR]rs]z; = 1)

if condition then
PC ~ PC +target

target — (offset;5)*® || offset || 02

condition —~ (GPR][rs]gz = 1)

if condition then
PC —~ PC + target

instruction.
Operation:
32 T
T+1:
endif
64 T
T+1:
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-35

Appendix A

BLTZA

Branch On Less

- Than Zero And Link B LTZAL
31 26 25 21 20 16 15 0
REGIMM rs BLTZAL offset
000001 10000
6 5 5 16
Format:
BLTZAL rs, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.
General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.
Operation:
32 T: target — (offset;s)'* || offset || 0
condition — (GPR[rs]z; = 1)
GPR[31] - PC+8
T+1: if condition then
PC ~ PC + target
endif
64 T: target — (offset;s)*® || offset || 02
condition — (GPR][rs]lgz3=1)
GPR[31] -« PC+8
T+1: if condition then
PC ~ PC + target
endif
Exceptions:
None
A-36 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BLTZA

Branch On Less
LL Than Zero And Link Likely

BLTZALL

31 26 25 21 20 16 15 0
REGIMM rs BLTZALL offset
000001 10010
6 5 5 16
Format:

BLTZALL rs, offset

Descripti

on:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general

register rs have the sign bit set, then the program branches to the target

address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:
32 T: target — (offset;s)'* || offset || 02
condition — (GPR][rs]z; = 1)
GPR[31] -« PC+8
T+1: if condition then
PC — PC + target
else . .
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition —~ (GPR][rs]gz = 1)
GPR[31] -« PC +8
T+1: if condition then
PC ~ PC + target
else . :
NullifyCurrentinstruction
endif
Exceptions:
None

MIPS R4000 Micropro

cessor User's Manual

A-37

Appendix A

B LTZ L Branch On Less Than Zero Likely B LTZ L

31 26 25 21 20 16 15 0
REGIMM rs BLTZL offset
000001 00010
6 5 5 16
Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

32 T: target — (offset;5)'*|| offset || 02
condition — (GPR([rs]3; = 1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;s)* || offset || 02
condition — (GPR[rslgz = 1)
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

A-38 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

B N E Branch On Not Equal B N E
31 26 25 21 20 16 15 0
BNE rs rt offset
000101
6 5 5 16
Format:
BNE rs, rt, offset
Description:
A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.
Operation:
32 T: target — (offset;5)'*|| offset || 02

T+1: if condition then

condition — (GPR[rs] # GPR]rt])

PC — PC + target
endif

64 T: target — (offset;s)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC — PC + target
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-39

Appendix A

BNEL Branch On Not Equal Likely BNEL
31 26 25 21 20 16 15 0
BNEL rs rt offset
010101
6 5 5 16
Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one

instruction.

If the conditional branch is not taken, the instruction in the branch delay

slot is nullified.

Operation:

32 T: target — (offset;5)'* || offset || 02
condition —~ (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif
64 T: target — (offset;5)*® || offset || 02
condition — (GPR[rs] # GPR]rt])
T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction

endif

Exceptions:

None

A-40 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

BREAK Breakpoint BREAK

31 26 25 65 0
SPECIAL code BREAK
000000 001101

6 20 6
Format:
BREAK
Description:

A breakpoint trap occurs, immediately and unconditionally transferring
control to the exception handler.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

32,64 T: BreakpointException

Exceptions:

Breakpoint exception

MIPS R4000 Microprocessor User's Manual A-41

Appendix A

CACHE Cache CACHE

31 26 25 21 20 16 15 0
CACHE base op offset
101111
6 5 5 16
Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The virtual address is translated to
a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CPO is not usable (User or Supervisor mode) the CPO enable bit in the
Status register is clear, and a coprocessor unusable exception is taken. The
operation of this instruction on any operation/cache combination not
listed below, or on a secondary cache when none is present, is undefined.
The operation of this instruction on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache
block.

For a primary cache of 2CACHEBITS pytes with 2LINEBITS pytes per tag,
VAddrCACHEB|T5 . LINEBITS SDECifieS the block.

For a secondary cache of 2CACHEBITS pytes with 2LINEBITS pytes per tag,
PAddrcacHesiTs ... LINEBITs SPecifies the block.

Index Load Tag also uses vAddr negiTs... 3 t0 select the doubleword for
reading ECC or parity. When the CE bit of the Status register is set, Hit
WriteBack, Hit WriteBack Invalidate, Index WriteBack Invalidate, and Fill
also use VAddr negiTs . 3 to select the doubleword that has its ECC or
parity modified. This operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data references,
and performs the specified operation if the cache block contains valid data
with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

A-42

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CACHE conued) CACHE

Write back from a primary cache goes to the secondary cache (if there is
one), otherwise to memory. Write back from a secondary cache always
goes to memory. A secondary write back always writes the most recent
data; the data comes from the primary data cache, if present, and modified
(the W bit is set). Otherwise the data comes from the specified secondary
cache. The address to be written is specified by the cache tag and not the
translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes TLB Modified or
Virtual Coherency exceptions.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache
0 | primary instruction
1 D primary data
2 Sl secondary instruction
3 SD secondary data (or combined instruction/data)

MIPS R4000 Microprocessor User's Manual A-43

Appendix A

CACHE

Cach
(contailr(;ugd) CAC H E

Bits 20...18 (this value is listed under the Code column) of the instruction
specify the operation as follows:

Code

Caches

Name

Operation

I, SI

Index
Invalidate

Set the cache state of the cache block to Invalid.

Index
Writeback
Invalidate

Examine the cache state and Writeback bit (W bit) of the primary data
cache block at the index specified by the virtual address. If the state is
not Invalid and the W bit is set, write the block back to the secondary
cache (if present) or to memory (if no secondary cache). The address to
write is taken from the primary cache tag. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR'd into the computed check bits during the write to
the secondary cache for the addressed doubleword. Set the cache state
of primary cache block to Invalid. The Wbit is unchanged (and irrelevant
because the state is Invalid).

SD

Index
Writeback
Invalidate

Examine the cache state of the secondary data cache block at the index
specified by the physical address. If the block is dirty (the state is Dirty
Exclusive or Dirty Shared), write the data back to memory. Like all
secondary writebacks, the operation writes any modified data for the
addresses from the primary data cache. The address to write is taken
from the secondary cache tag. The Pldx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. In all cases, set the state of the secondary cache block
and all matching primary subblocks to Invalid. No Invalidate is sent on
the R4000’s system interface.

All

Index Load
Tag

Read the tag for the cache block at the specified index and place it iinto
the TaglLo and TagHi CPO registers, ignoring any ECC or parity errors.
Also load the data ECC or parity bits into the ECC register.

All

Index Store
Tag

Write the tag for the cache block at the specified index from the TagLo
and TagHi CPO registers. The processor uses computed parity for the
primary caches and the TagLo register in the case of the secondary
cache.

A-44

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CACHE

Cach
(contailr(;ugd) CAC H E

Code

Caches

Name

Operation

SD

Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from memory
when writing new contents into an entire cache block. If the cache block
is valid but does not contain the specified address (a valid miss) the
secondary block is vacated. The data is written back to memory if dirty
and all matching blocks in both primary caches are invalidated. As usual
during a secondary writeback, if the primary data cache contains
modified data (matching blocks with W bit set) that modified data is
written to memory. If the cache block is valid and contains the specified
physical address (a hit), the operation cleans up the primary caches to
avoid virtual aliases: all blocks in both primary caches that match the
secondary line are invalidated without writeback. Note that the search for|
matching primary blocks uses the virtual index of the Pldx field of the
secondary cache tag (the virtual index when the location was last used)
and not the virtual index of the virtual address used in the operation (the
virtual index where the location will now be used). If the secondary tag
and address do not match (miss), or the tag and address do match (hit)
and the block is in a shared state, an invalidate for the specified address
is sent over the System interface. In all cases, the cache block tag must
be set to the specified physical address, the cache state must be set to
Dirty Exclusive, and the virtual index field set from the virtual address.
The CH bit in the Status register is set or cleared to indicate a hit or miss

Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from secondary
cache or memory when writing new contents into an entire cache block.

If the cache block does not contain the specified address, and the block
is dirty, write it back to the secondary cache (if present) or otherwise to
memory. In all cases, set the cache block tag to the specified physical

address, set the cache state to Dirty Exclusive.

Hit Invalidate

If the cache block contains the specified address, mark the cache block
invalid.

S|, SD

Hit Invalidate

If the cache block contains the specified address, mark the cache block
invalid and also invalidate all matching blocks, if present, in the primary
caches (the Pldx field of the secondary tag is used to determine the
locations in the primaries to search). The CH bit in the Status register is
set or cleared to indicate a hit or miss.

Hit Writeback
Invalidate

If the cache block contains the specified address, write the data back if it
is dirty, and mark the cache block invalid. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR'd into the computed check bits during the write to
the secondary cache for the addressed doubleword.

MIPS R4000 Microprocessor User's Manual A-45

Appendix A

CACHE

Cach
(contailr(;ugd) CAC H E

Code

Caches

Name

Operation

SD

Hit Writeback
Invalidate

If the cache block contains the specified address, write back the data (if
dirty), and mark the secondary cache block and all matching blocks in
both primary caches invalid. As usual with secondary writebacks,
modified data in the primary data cache (matching block with the W bit
set) is used during the writeback. The Pldx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

Fill

Fill the primary instruction cache block from secondary cache or memory.
If the CE bit of the Status register is set, the content of the ECC register
is used instead of the computed parity bits for addressed doubleword
when written to the instruction cache. For the R4000PC, the cache is
filled from memory. For the R4000SC and R4000MC, the cache is filled
from the secondary cache whether or not the secondary cache block is
valid or contains the specified address.

Hit Writeback

If the cache block contains the specified address, and the W bit is set,
write back the data. The W bit is not cleared; a subsequent miss to the
block will write it back again. This second writeback is redundant, but not
incorrect. When a secondary cache is present, and the CE bit of the
Status register is set, the content of the ECC register is XOR’d into the
computed check bits during the write to the secondary cache for the
addressed doubleword. Note: The W bit is not cleared during this
operation due to an artifact of the implementation; the W bit is
implemented as part of the data side of the cache array so that it can be
written during a data write.

SD

Hit Writeback

If the cache block contains the specified address, and the cache state is
Dirty Exclusive or Dirty Shared, data is written back to memory. The
cache state is unchanged; a subsequent miss to the block causes it to be
written back again. This second writeback is redundant, but not
incorrect. The CH bit in the Status register is set or cleared to indicate a
hit or miss. The writeback looks in the primary data cache for modified
data, but does not invalidate or clear the Writeback bit in the primary datal
cache. Note: The state of the secondary block is not changed to clean
during this operation because the W bit of matching sub-blocks cannot
be cleared to put the primary block in a clean state.

Hit Writeback

If the cache block contains the specified address, data is written back
unconditionally. When a secondary cache is present, and the CE bit of
the Status register is set, the contents of the ECC register is XOR'd into
the computed check bits during the write to the secondary cache for the
addressed doubleword.

A-46

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CACHE

Cach
(contailr(;ugd) CAC H E

Code

Caches

Name

Operation

SI,SD

Hit Set Virtual

This operation is used to change the virtual index of secondary cache
contents, avoiding unnecessary memory operations. If the cache block
contains the specified address, invalidate matching blocks in the primary
caches at the index formed by concatenating Pldx in the secondary
cache tag (not the virtual address of the operation) and vAddr,; 4, and
then set the virtual index field of the secondary cache tag from the
specified virtual address. Modified data in the primary data cache is not
preserved by the operation and should be explicitly written back before
this operation. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

Operation:

32,64

T:

vAddr — ((offset;5)*® || offset;s_o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-47

Appendix A

M Control F
CFCz O\éeop%rg:écs)soﬁom CFCz

31 26 25 21 20 16 15 11 10 0
COPz CF rt rd 0
0100xx* 00010 00000
6 5 5 5 11
Format:
CFCzrt, rd
Description:

The contents of coprocessor control register rd of coprocessor unit z are
loaded into general register rt.

This instruction is not valid for CPO.

Operation:

32 T: data — CCRJz,rd]
T+1: GPR[rt] ~ data

64 T: data — (CCR[z,rd]3;)%? || CCRIz,rd]
T+1: GPR[rt] ~ data

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

F 7 Bit#31 30 29 28 27 26 25 24 23 22 21 0

CFCZ o2 [oolo 2 oo o] o]
Bit#31 30 29 28 27 26 25 24 23 22 21 0
crcol 01]ofol1fofofolofaf[o] |

. H_/\ !

N ™~
Opcode \ Coprocessor Suboperation
Coprocessor Unit Number

A-48 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

COPz Coprocessor Operation COPz

31 26 25 24 0

cofun
0100xx*| 1

6 1 25

COPz CO

Format:

COPz cofun
Description:

A coprocessor operation is performed. The operation may specify and
reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

32,64 T: CoprocessorOperation (z, cofun)

Exceptions:

Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception (R4000 CP1 only)

*Opcode Bit Encoding:

COP3Z git# 3130 29 28 27 26 25 0
copo 0] 1/ 0]0 001 |

Bit# 3130 29 28 27 26 25 .
COPl‘O‘l‘O‘O‘O‘l‘l ‘

Bit# 3130 29 28 27 26 25 o

COPZ‘O‘l‘O‘O‘l‘O‘l ‘

%/_H_A_VJ

L CO sub-opcode (see end of Appendix A)
Opcode L Coprocessor Unit Number

MIPS R4000 Microprocessor User's Manual A-49

Appendix A

CTCz Move Control to Coprocessor CTCz

31 26 25 21 20 16 15 11 10 0
COPz CT rt rd 0
0100xx*| 00110 00000000000
6 5 5 5 11
Format:
CTCzrt, rd
Description:

The contents of general register rt are loaded into control register rd of
coprocessor unit z.

This instruction is not valid for CPO.

Operation:

32,64 T: data — GPR[r]
T+ 1: CCR[z,rd] ~ data

Exceptions:

Coprocessor unusable

*See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

A-50 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DADD

Doubleword Add

DADD

31

26 25

21 20

16 15

11 10 6

5

0

SPECIAL

000000

s

rt

rd

0
00000

DADD
101100

6

5

6

Format:
DADD rd, rs, rt

Descri

ption:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2's
complement overflow). The destination register rd is not modified when

an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64

T: GPR[rd] - GPR][rs] + GPR]rt]

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-51

Appendix A

DADID| Doubleword Add Immediate DADDI
31 26 25 21 20 16 15 0
DADDI rs rt immediate
011000
6 5 5 16
Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T GPRI[rt] — GPR[rs] + (immediate;5)*® | | immediate;s ,

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

A-52 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DADDIU

Doubleword Add
Immediate Unsigned

DADDIU

31 26 25 21 20 16 15 0
DADDIU rs it immediate
011001
6 5 5 16
Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.

No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is
that DADDIU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64 T

GPR [rf] — GPR[rs] + (immediate;5)*® || immediate;s_g

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-53

Appendix A

DADDU Doubleword Add Unsigned DADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DADDU
000000 00000 101101
6 5 5 5 5 6

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is
that DADDU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T. GPRIrd] - GPR[rs] + GPRIr]

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-54 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DDIV

Doubleword Divide DDIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIV
000000 00 0000 O0O0O0O 011110
6 5 5 10 6
Format:
DDIV rs, rt
Description:
The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.
This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.
When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:
64 T-2: LO ~ undefined
HI « undefined
T-1: LO ~ undefined
HI ~ undefined
T: LO ~ GPRJrs] div GPR]rt]
HI ~ GPR[rs] mod GPRrt]
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-55

Appendix A

DDIVU

Doubleword Divide Unsigned

DDIVU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DDIVU
000000 000000 O0O0O0O 011111
6 5 5 10 6

Format:
DDIVU rs, rt
Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.
Operation:
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T: LO ~ (0] GPR]rs]) div (0 || GPR[rt])
HI < (0] GPRJ[rs]) mod (0 || GPR]rt])
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-56

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DIV

Divide DIV

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIV
000000 00 0000 O00O0O 011010
6 5 5 10 6
Format:
DIV rs, rt
Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

MIPS R4000 Microprocessor User's Manual A-57

Appendix A

DIV

Divide
(continued) D IV

Operation:
32 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T: LO « GPRJrs] div GPRJrt]
HI < GPRJ[rs] mod GPR]r]
64 T-2: LO ~ undefined
HI ~ undefined
T-1 LO ~ undefined
HI ~ undefined
T: q ~ GPR(rsl3; g div GPR[rtl31 o
r — GPR[rS]31“_0 mod GPR[rt]31_“0
LO - (Q31)3322 [l d31...0
HI < (r39)” llr31.0
Exceptions:
None

A-58

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DIVU Divide Unsigned DIVU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DIVU
000000 000000O0O0O0O 011011
6 5 5 10 6
Format:
DIVU rs, rt
Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

MIPS R4000 Microprocessor User's Manual A-59

Appendix A

[)l\/lJ Divide Unsigned [)l\/lJ

(continued)

Operation:
32 T-2: LO ~ undefined
HI « undefined
T-1 LO ~ undefined
HI ~ undefined
T: LO < (0] GPR]rs]) div (0 || GPRIrt])
HI < (0]] GPR[rs]) mod (0 || GPR]rt])
64 T-2: LO ~ undefined
HI — undefined
T-1: LO — undefined
HI — undefined
T q — (0|l GPRIrs]ay..0) div (0 || GPRIrt]3;.. o)
r — (0] GPR[rs]z;. o) mod (0 || GPRIrt]3;. o)
LO - (@)% |l 9310
HI — (30* 310
Exceptions:
None

A-60 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Doubleword Move From
D M FCO System Control Coprocessor D M FCO

31 26 25 21 20 16 15 11 10 0
COPO DMF rt rd 0
010000 00001 000 0000 00OO0
6 5 5 5 11
Format:
DMFCO rt, rd
Description:

The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

This operation is defined for the R4000 operating in 64-bit mode and in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception. All 64-bits of the general
register destination are written from the coprocessor register source. The
operation of DMFCO on a 32-bit coprocessor 0 register is undefined.

Operation:

64 T: data — CPR[0,rd]
T+1: GPR][rt] ~ data

Exceptions:

Coprocessor unusable exception
Reserved instruction exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

MIPS R4000 Microprocessor User's Manual A-61

Appendix A

Doubleword Move To
D MTCO System Control Coprocessor D MTCO

31

26 25 21 20 16 15 1110 0

DMT rt rd 0
00101 000 0000 0000

5 5 5 11

Format:

DMTCO rt, rd

Description:

Operat

The contents of general register rt are loaded into coprocessor register rd
of the CPO.

This operation is defined for the R4000 operating in 64-bit mode or in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general
register source. The operation of DMTCO0 on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.

ion:

64

T: data « GPR[r]
T+1: CPRI[O,rd] ~ data

Exceptions:

Coprocessor unusable exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

A-62

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

D M U L" Doubleword Multiply D M U |_T
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULT
000000 000000 O0O0O0O 011100
6 5 5 10 6
Format:
DMULT rs, rt
Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 2’s complement values. No integer overflow exception occurs
under any circumstances.
When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:
64 T-2: LO ~ undefined
HI ~ undefined
T-1: LO ~ undefined
HI ~ undefined
T t ~ GPRJrs] * GPR]rt]
Hl — 1107 64
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-63

Appendix A

DMULTU " rdgned ™ DMULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 DMULTU
000000 0000000000 011101
6 5 5 10
Format:

DMULTU s, rt

Description:

Operat

The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

ion:

64 T-2: LO — undefined

Hl — undefined

T-1: LO « undefined

HI — undefined

T: t « (0]] GPR]rs]) * (0 || GPRYrt])
HI <1127 64
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-64

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSLL Doubleword Shift Left Logical DSLL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL
0000O0O0 00000 111000
6 5 5 5 5 6

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits. The result is placed in register rd.

Operation:

64 T. s<0]lsa
GPR[rd] — GPRJrt]3-s)...0 Il 0s

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-65

Appendix A

DSLLV

Doubleword Shift Left

Logical Variable

DSLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSLLV
000000 00000 010100
6 5 5 5 5 6

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits
specified by the low-order six bits contained in general register rs,
inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.
Operation:
64 T: s « GPRJrs]5 o
GPRI[rd] - GPR[rt]g3s). 0 Il 0°
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-66

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSLL32

Doubleword Shift Left

DSLL32

Logical + 32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSLL32
000000 00000 111100
6 5 5 5 5 6
Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32+sa bits, inserting
zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.
Operation:
64 T: s« 1] sa
GPR[rd]<— GPR[I’t](63_S)m0 ” OS
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-67

Appendix A

Doubleword
DSRA Shift Right Arithmetic DSRA
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA
000000 00000 111011
6 5 5 5 5 6
Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: s« 0]lsa
GPRIrd] — (GPRIrt]g3)° || GPRIr] g3

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-68 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Doubleword Shift Right
)S RAV Arithmetic Variabl% DS RAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSRAV
000000 00000 010111
6 5 5 5 5 6

Format:
DSRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, sign-extending the
high-order bits. The result is placed in register rd.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T:. s~ GPR[rs]5 g

GPR[rd] — (GPR|rt]g3)° || GPR[rt]g3 s
Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-69

Appendix A

Doubl d Shift Right
DSRA32 " Aithmetic + 32 DSRA32
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRA32
000000 00000 111111
6 5 5 5 5
Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32+sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: s<1]lsa
GPR(rd] — (GPR{rtlg3)* || GPR[r] ¢3_. s

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-70 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSRL

Doubleword
Shift Right Logical

DSRL

Reserved instruction exception (R4000 in 32-bit mode)

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa DSRL
000000 00000 111010
6 5 5 5 5 6

Format:
DSRL rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T. s<0]|sa

GPR[rd] — 0°|| GPR][rt]g3 s
Exceptions:

MIPS R4000 Microprocessor User's Manual

A-71

Appendix A

Doubleword Shift Right

DS R LV Logical Variable

DSRLV

31

26 25 21 20 16 15

11 10 6

SPECIAL rs rt rd
000000

0
00000

6 5 5 5

5

Format:
DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64 T: s < GPR[rsls o
GPR[rd] —~ 0° || GPR[rtlg3..s

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

A-72

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSRL32

Doubleword Shift Right

DSRL32

Reserved instruction exception (R4000 in 32-bit mode)

Logical + 32
31 26 25 21 20 16 15 11 10 6 0
SPECIAL 0 rt rd sa DSRL32
000000 00000 111110
6 5 5 5 5 6
Format:
DSRL32rd, rt, sa
Description:
The contents of general register rt are shifted right by 32+sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception
Operation:
64 T: s« 1] sa
GPR[rd] — 0° || GPR][rt]g3. s
Exceptions:

MIPS R4000 Microprocessor User's Manual

A-73

Appendix A

:)SU B Doubleword Subtract DSU B
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 DSUB
000000 00000 101110
6 5 5 5 5 6
Format:
DSUB rd, rs, rt
Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.
The only difference between this instruction and the DSUBU instruction is
that DSUBU never traps on overflow.
An integer overflow exception takes place if the carries out of bits 62 and
63 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:
64 T: GPRJrd] — GPR[rs] — GPR]rt]
Exceptions:
Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)
A-74 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

DSUBU

Doubleword Subtract Unsigned

DSUBU

Reserved instruction exception (R4000 in 32-bit mode)

31 26 25 21 20 16 15 11 10 6 0
SPECIAL rs rt rd 0 DSuUBU
000000 00000 101111

6 5 5 5 5 6

Format:
DSUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.
The only difference between this instruction and the DSUB instruction is
that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception

Operation:

64 T: GPRJ[rd] « GPR[rs] — GPR]rt]

Exceptions:

MIPS R4000 Microprocessor User's Manual

A-75

Appendix A

ERET Exception Return ERET

31 26 2524 65 0
COPO CcoO 0 ERET
010000 1 0000000 0OO00OO0O0OOOOOOOO 011000
6 1 19 6

Format:
ERET
Description:

ERET is the R4000 instruction for returning from an interrupt, exception,
or error trap. Unlike a branch or jump instruction, ERET does not execute
the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR, = 1), then load the PC from
the ErrorEPC and clear the ERL bit of the Status register (SR,). Otherwise
(SR, = 0), load the PC from the EPC, and clear the EXL bit of the Status
register (SRy).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

32,64 T: if SR, =1then

PC ~ ErrorEPC

SR « SR3; 310 SRy o
else

PC « EPC

'SR ~ SR31. 5|1 0]| SRq
endif
LLbit « O

Exceptions:

Coprocessor unusable exception

A-76 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

J Jump J

31 26 25 0
J target
000010
6 26
Format:
J target
Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

32 T: temp - target
T+1: PC « PCg; g | temp || 02

64 T: temp - target
T+1: PC « PCg3 g |l temp || 02

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-77

Appendix A

JAL Jump And Link JAL

31 26 25 0
JAL target
000011
6 26
Format:
JAL target
Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31.

Operation:

32 T: temp - target
GPR[31] -« PC+8
T+1: PC « PC 3, ,g |l temp || 02

64 T:. temp — target
GPR[31] - PC+8
T+1: PC « PC g3 _,g | temp || 02

Exceptions:

None

A-78 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

JALR

Jump And Link Register JALR

31

26 25 21 20 16 15 11 10 6 5 0

SPECIAL
00000O0

rs 0 rd 0 JALR
00000 00000 001001

6

5 5 5 5 6

Format:

JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction. The address of the instruction
after the delay slot is placed in general register rd. The default value of rd,
if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction
does not have the same effect when re-executed. However, an attempt to
execute this instruction is not trapped, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation:

32,64

T: temp — GPR [rs]
GPR[rd] -« PC+8
T+1: PC ~ temp

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-79

Appendix A

JR

Jump Register

JR

31

26 25

2120

65

SPECIAL
00000O0

rs

0
000 0000 0OO0O0OOOOO

JR
001000

6

15

6

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction
must specify a target register (rs) whose two low-order bits are zero. If
these low-order bits are not zero, an address exception will occur when the
jump target instruction is subsequently fetched.

Operation:

32,64

T:
T+1:

temp « GPR]rs]
PC ~ temp

Exceptions:

None

A-80

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

| B Load Byte

LB

31 26 25 21 20 16 15 0
LB base rt offset
100000
6 5 5 16
Format:

LB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign-extended and

loaded into general register rt.

Operation:

32 T:

64 T

VAddr ((offset;5)'® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3| (PAddr, o xor ReverseEndian3)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, oxor BigEndianCPU®

24
GPR[rt] « (Memz.gspyte)” || MEM7igepyte grbyte

VAddr — ((offset;5)* || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze — 1 3|l (PAddr, o xor ReverseEndian®)

mem — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, o xor BigEndianCPU®

56
GPR[rt] — (Memz7.gepyyte)” || MEM7.igapyte. . gobyte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual

A-81

Appendix A

_BU Load Byte Unsigned LBU
31 26 25 21 20 16 15 0
LBU base rt offset
100100
6 5 5 16
Format:
LBU rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.
Operation:
32 T: vAddr — ((offset;5)'® || offset;s) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpg;ze 1 3 |l (PAddr, o xor ReverseEndian®)
mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, o xor BigEndianCPU®
GPRIrt] — 0%* || memy,g- byte...8* byte
64 T: vAddr — ((offset;s)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize — 1 3 || (PAddr, o xor ReverseEndian®)
mem — LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte — vAddr, oxor BigEndianCPU3
GPRI[rt] — 0°° || memz.gs pyte...8* byte
Exceptions:
TLB refill exception TLB invalid exception
Bus error exception Address error exception
A-82 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LD Load Doubleword LD
31 26 25 21 20 16 15 0
LD base rt offset
110111
6 5 5 16
Format:
LD rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register rt.
If any of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:

64 T: VAddr ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR]rt] « mem

Except

ions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

MIPS R4000 Microprocessor User's Manual A-83

Appendix A

LDCz

Load Doubleword To Coprocessor

LDCz

31 26 25 21 20 16 15 0
LDCz base rt offset
1101xx*
6 5 5 16

Format:
LDCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z. The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.
If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.
This instruction is not valid for use with CPO.
This instruction is undefined when the least-significant bit of the
rt field is non-zero.
*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

A-84 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LDCZ Load Doubleword To Coprocessor LDCZ

(continued)

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

64 T: VAddr — ((offset;s)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

COPzLD (rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:
LDCz Bit#31 30 29 28 27 26 0

ipcl 1|1 0] 1 0 1
Bit#31 30 29 28 27 26 0
ipc2| 1|1 0|1 1 0
o _/

OMe Coprocessor Unit Number

MIPS R4000 Microprocessor User's Manual A-85

Appendix A

LDL

Load Doubleword Left L D |_

31 26 25 21 20 1615 0

LDL
011010

base rt offset

6

Format:

LDL rt, offset(base)

Description:

This instruction can be used in combination with the LDR instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDL loads the left portion of the register
with the appropriate part of the high-order doubleword; LDR loads the
right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

memory
(big-endian) register

address 8 8

9]10|11|12|13| 14|15

address 0 0

12073 256l 7| before| A|B[C|D|E[F]|G|H]s24

LDL $24,3($0)

after [3]4]5]6[7]F[G[H]| s24

A-86

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LDL Load Doubleword Left LDL

(continued)

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpsize_;1 3 || (PAddr, o xor ReverseEndian®)

if BigEndianMem = 0 then
pAddr — pAddrpgize_; 3|l 03
endif
byte — VAddr, o xor BigEndianCPU?
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPRIrt] — memz.gspyte...0 Il GPR[rMtls5_gsbyte...0

MIPS R4000 Microprocessor User's Manual A-87

Appendix A

Load Doubleword Left
I—DI— (continued) I—DI—

Given a doubleword in a register and a doubleword in memory, the
operation of LDL is as follows:

LDL

Register | A | B | C| D | E| F | G| H

Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU = 1
VAddr 5, g destination type offset destination type offset
LEM BEM LEM BEM

0 PBCDEFGH| O 0O 7 |1 J KLMNOP| 7 0 O
1 OPCDEFGH| 1 0O 6 JKLMNOPH| 6 0 1
2 NOPDEFGH| 2 0 5 |KLMNOPGH| 5 0o 2
3 MNOPEFGP| 3 0 4 |[LMNOPFGH| 4 0 3
4 L MNOPFGH| 4 0 3 MNOPEFGH| 3 0 4
5 KLMNOPGH| 5 0 2 I[NOPDEFGH| 2 0 5
6 J KLMNOPH| 6 0 1 [OPCDEFGH| 1 0 6
7 I JKLMNOP| 7 0O O PBCDEFGH| O 0 7

LEM Little-endian memory (BigEndianMem = 0)

BEM BigendianMem =1

Type AccessType (see Table 2-1) sent to memory

Offset pAddr,_,sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

A-88 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

| DR

Load Doubleword Right I_ D R

31 26 25 21 20 16 15 0
LDR base rt offset
011011
6 5 5 16
Format:

LDR rt, offset(base)

Description:

This instruction can be used in combination with the LDL instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDR loads the right portion of the register
with the appropriate part of the low-order doubleword; LDL loads the left
portion of the register with the appropriate part of the high-order
doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

memory
(big-endian)

address 8 8

register
9 /1011|1213 |14 |15

address0 | O

112 13lals 6| 7| before[A|B[C|D|E|F|G|H| 324

LDR $24,4($0)
register

after ‘A‘B‘C‘0‘1‘2‘3‘4‘$24

MIPS R4000 Microprocessor User's Manual A-89

Appendix A

L DR Load Doubleword Right L DR

(continued)

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze_1 3|l (PAddr, o xor ReverseEndian®)

if BigEndianMem = 1 then
pAddr — pAddrs; 5] 0°
endif
byte — vAddr, o xor BigEndianCPU?
mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPRIrt] — GPR{rtlg3 g4-g+byte || MEMg3. grhyte

A-90 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LDR

Load Doubleword Right
(continued)

Given a doubleword in a register and a doubleword in memory, the

operation of LDR is as follows:

LDR

LDR
Register A B C D E F G H
Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
VvAddr 5 g destination type offset destination type offset
LEM BEM LEM BEM
0 I JKLMNOP| 7 0 0 |ABCDEFGI 0 7 0
1 Al JKLMNO| 6 1 0 |ABCDEFI J| 1 6 O
2 ABIl JKLMN| 5 2 0 |ABCDEI J K| 2 5 0
3 ABCIJKLM 14 3 0 |ABCDI JKL| 3 4 0
4 ABCDI JKL| 3 4 0 |ABCIlI JKL M| 4 3 0
5 ABCDEI JK| 2 5 0 |ABI JKLMN| 5 2 0
6 ABCDEFI J| 1 6 0 |AIl JKLMNO| 6 1 0
7 A BCDEFGI 0 7 0 |l J KLMNOP| 7 0O O
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_ ,sent to memory
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-91

Appendix A

_H

Load Halfword |_ H

31

26 25 21 20 16 15 0

LH

100001

base rt offset

6

Format:

LH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

32 T:

64 T:

vAddr — ((offset;5)° || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize — 1.3 || (PAddr, g xor (ReverseEndian || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU? || 0)

GPRIrt] ~ (memls+8*byte):LG |l memys.geyte...8* byte

VAddr « ((offset;5)*® || offset;s) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze_ 1.3l (PAddr,_ g xor (ReverseEndian || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, xor (BigEndianCPU? || 0)

48
GPR[rt] « (memys.gepyte)™ || MeMysigepyte.. 8% byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception

Address error exception

A-92

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LHU

Load Halfword Unsigned L HU

31 26 25 21 20 16 15 0

LHU
100101

base rt offset

6

Format

LHU rt, offset(base)

Description:

Operat

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

ion:

32 T:

64 T

vAddr — ((offset;5)!® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize_1 3 || (PAddr, o xor (ReverseEndian? || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, oxor (BigEndianCPU? || 0)

GPRI[r] ~ 0% || MEM;5.+g+pyte...8*byte

vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize 1. 3| (PAddr, g xor (ReverseEndian? || 0))
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte — vAddr, xor (BigEndianCPU2 [| 0)

GPR[rt] - 048 || memis.gspyte...a*byte

Exceptions:

TLB refill exception TLB invalid exception
Bus Error exception Address error exception

MIPS R4000 Micro

processor User's Manual A-93

Appendix A

| L Load Linked L L
31 26 25 21 20 16 15 0
LL base rt offset
110000

6 5 5 16

Format:

LL rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended.

The processor begins checking the accessed word for modification by
other processor and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

L1:
LL T1, (TO)
ADD T2,T1,1
SC T2, (TO)
BEQ T2,0,L1
NOP

This atomically increments the word addressed by T0. Changing the ADD
to an OR changes this to an atomic bit set. This instruction is available in
User mode, and it is not necessary for CPO to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent. A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store
operation should occur between LL and SC, otherwise the SC may never
be successful. Exceptions also cause SC to fail, so persistent exceptions
must be avoided. If either of the two least-significant bits of the effective
address are non-zero, an address error exception takes place.

A-94

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LL

Load Linked LL

(continued)

Operation:

32

64

T:

vAddr — ((offset;5)° || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgize-1_ 3 Il (PAddr, g xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigendianCPU || 02)

GPR[rt] « memsy.gepyte.. ghyte

LLbit ~ 1

vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 0?)
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0?)

GPR[rt] « (mem31+8*byte)32 || mem3y.geyte...8*byte

LLbit « 1

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual

A-95

Appendix A

LLD

Load Linked Doubleword

LLD

31 26 25 21 20 16 15 0
LLD base rt offset
110100
6 5 5 16
Format:

LLD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

The processor begins checking the accessed word for modification by

other processor and devices.

Load Linked Doubleword and Store Conditional Doubleword can be used
to atomically update memory locations:

L1:

LLD

ADD
SCD
BEQ
NOP

T1, (TO)
T2,T1,1
T2, (TO)
T2,0,L1

This atomically increments the word addressed by TO. Changing the ADD

to an OR changes this to an atomic bit set.

A-96

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LLD

Load Linked Doubleword
(continued) I— I— D

The operation of LLD is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of
LLD is undefined if the addressed location is noncoherent. A cache miss
that occurs between LLD and SCD may cause SCD to fail, so no load or
store operation should occur between LLD and SCD, otherwise the SCD
may never be successful. Exceptions also cause SCD to fail, so persistent
exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for CP0
to be enabled.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:
64 T: vVvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR][rt] « mem
LLbit ~ 1
Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-97

Appendix A

L UI Load Upper Immediate L UI

31 26 25 21 20 16 15 0
LUI 0 rt immediate
001111 00000
6 5 5 16
Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of
zeros. The result is placed into general register rt. In 64-bit mode, the
loaded word is sign-extended.

Operation:

32 T: GPRIt] — immediate || 016

64 T: GPRJr] — (immediate;5)3? || immediate || 01®

Exceptions:

None

A-98 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LW

Load Word LW

31 26 25 21 20 16 15 0
LW base rt offset
100011
6 5 5 16
Format:
LW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the

memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended. If either of
the two least-significant bits of the effective address is non-zero, an

add

Operation:

ress error exception occurs.

32 T:

64 T

VAddr — ((offset;s)1 || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, xor (BigEndianCPU || 0?%)

GPR[rt] — memzy.gepyte.. ghyte

VAddr < ((offset;s)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 02))
mem — LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — VvAddr, o xor (BigEndianCPU || 0%)

32
GPR[r] « (Mmemszy.gupyte)” || MeM3y.igpyte.. 8*byte

Exceptions:
TLB refill exception TLB invalid exception

Bus

error exception Address error exception

MIPS R4000 Microprocessor User's Manual

A-99

Appendix A

LWCz

Load Word To Coprocessor

LWCz

31 26 25 21 20 16 15 0
LWCz base rt offset
1100xx*
6 5 5 16
Format:

LWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The processor reads a word from

the addressed memory location, and makes the data available to

coprocessor unit z.

The manner in which each coprocessor uses the data is defined by the

an address error exception occurs.

individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non-zero,

This instruction is not valid for use with CPO.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

A-100

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LW C 7 Load Wo(r((:jol'gn%gg ;ocessor LW C 7

Operation:

32 T

64 T

vAddr — ((offset;5)° || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpsze.1 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigendianCPU || Oé)

COPzLW (byte, rt, mem)

VAddr — ((offset;5)*® || offset;s o) + GPR[base}

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpsze.1 3 || (PAddr, o xor (ReverseEndian || 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || Oé)

COPzLW (byte, rt, mem)

Exceptions:

TLB refill exception TLB invalid exception
Bus error exception Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

LWCz sBit#31 30 29 28 27 26 0
tweal 1)1 0| O 0 1
Bit#31 30 29 28 27 26 0
o _/
Opcode Coprocessor Unit Number
MIPS R4000 Microprocessor User's Manual A-101

Appendix A

WL Load Word Left L WL
31 26 25 21 20 16 15 0
LWL base rt offset
100010
6 5 5 16
Format:

LWL rt, offset(base)

Description:

This instruction can be used in combination with the LWR instruction to

load a register with four consecutive bytes from memory, when the bytes
cross aword boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of

the register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, the loaded word
is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the word in
memory. The least-significant (right-most) byte(s) of the register will not
be changed.

memory
(big-endian) register
catoss [L 5[0 111 e (Al 8] ¢l 5] s
LWL $24,1($0)
ater | 1| 2] 3] D | $24
A-102 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LWL

Load Word Left LW L

(continued)

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:

32 T: VAddr — ((offset;5)'® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze_1 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 0 then

pAddr — pAddrpsze_y. 2 || 07

endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — MeMszo«yord+ghyte+7...32*word || GPRIMl23.gxpyte...0
GPR]rt] ~ temp

64 T: VAddr — ((offset;5)*® || offset;s_o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 0 then
pAddr — pAddrpgze—y. 2 Il 0°
endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)

temp — mMemMgzasyord+grbyte+7...32*word || GPRIM23.84yte...0
GPR][rt] — (temps;)3? || temp

MIPS R4000 Microprocessor User's Manual A-103

Appendix A

Load Word Left
LWI— (continued) I—WI—

Given a doubleword in a register and a doubleword in memory, the
operation of LWL is as follows:

LWL
Register A B C D E F G H
Memory I J K L M N O P
BigEndianCPU =0 BigEndianCPU = 1
VAddr 5 g destination type offset destination type offset
LEM BEM LEM BEM
0 SSSSPFGH| O 0 7 |SSSSI JKL| 3 4 0
1 SSSSOPGH| 1 0 6 |[SSSSJKLH 2 4 1
2 SSSSNOPH| 2 0 5 |SSSSKLGH| 1 4 2
3 SSSSMNOP| 3 0 4 |[SSSSLFGH| O 4 3
4 SSSSLFGH| O 4 3 |SSSSMNOP| 3 0o 4
5 SSSSKLGH| 1 4 2 |SSSSNOPH 2 0 5
6 SSSSJKLH 2 4 1 |[SSSSOPGH| 1 0 6
7 SSSSI JKL| 3 4 0 |SSSSPFGH| O 0o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_,sent to memory
S sign-extend of destinations;
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

A-104 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LWR

Load Word Right LWR

31 26 25 21 20 16 15 0
LWR base rt offset
100110
6 5 5 16
Format:

LWR rt, offset(base)

Description:

This instruction can be used in combination with the LWL instruction to

load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, if bit 31 of the
destination register is loaded, then the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the word
in memory. The most significant (left-most) byte(s) of the register will not
be changed.

memory

(big-endian) register

address 4

5 6 7

before\ A\ B\ C\ D\$24

address 0

4|
o\ 1| 2| 3

LWR $24,4($0)

ater | A| B| c| 4]

MIPS R4000 Microprocessor User's Manual A-105

Appendix A

LWR oad o S LWR

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:
32 T: VAddr — ((offset;5)'8 || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr, o xor ReverseEndian®)
if BigEndianMem = 1 then
 pAddr — pAddrpgize_31. 3l 0°
endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigeEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — GPRIrt]31. 32-g*byte |l MEM314324w0rd...324word+8*byte
GPRJrt] « temp
64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgize_1. 3 || (PAddr,_ o xor ReverseEndiand)
if BigEndianMem = 1 then
 pAddr — pAddrpgize_31. 3|l 0°
endif
byte — vAddr, o xor BigEndianCPU?
word ~ vAddr, xor BigeEndianCPU
mem ~ LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp — GPRIrt]31. 32-g*byte Il MEM314324w0rd...324word+8*byte
GPR[rt] — (temp3;)3? || temp
A-106 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

LWR

Load Word Right

(continued)

LWR

Given a word in a register and a word in memory, the operation of LWR

is as follows:
LWR
Register | A | B CcC| D E | F G| H
Memory | J K L M N o P
BigendianCPU =0 BigEndianCPU =1
VAddr 5 4 destination type offset destination type offset
LEM BEM LEM BEM
0 SSSSMNOP| O 0 4 [XXXXEFGI 0 7 0
1 XXXXEMNO| 1 1 4 XX XXEFI J 1 6 0
2 XXXXEFMN| 2 2 4 | XXXXEIJK| 2 5 0
3 XXXXEFGM 3 3 4 |SSSSIJKL| 3 4 0
4 SSSSI JKL| O 4 0 XX XXEFGM O 3 4
5 XXXXEI JK| 1 5 0 | XXXXEFMN| 1 2 4
6 XXXXEFI J] 2 6 0 | XX XXEMNO| 2 1 4
7 XXX XEFGI 3 7 0 SSSSMNOP| 3 0 4
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr, o sent to memory
S sign-extend of destinations;
X either unchanged or sign-extend of destinations;
Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual

A-107

Appendix A

WU Load Word Unsigned LWU
31 26 25 21 20 16 15 0
LWuU base rt offset
100111
6 5 5 16
Format:

LWU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general

register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero,

an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, g xor (BigEndianCPU || 02)

GPRIr] ~ 032 || memsy.gepyte.. 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

A-108

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Move From
M FCO System Cont\r/ol Coprocessor M FCO

31 26 25 21 20 16 15 11 10 0
COPO MF rt rd 0
010000 | 000O0O 000 0000 00O0O
6 5 5 5 11

Format:
MFCO rt, rd

Description:
The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

Operation:

32 T: data -« CPR[O,rd]
T+1: GPR][rt] ~ data

64 T: data — CPR[O,rd]
T+1: GPR[rt] (datag;)®? || datag; g

Exceptions:
Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-109

Appendix A

MFCz Move From Coprocessor MFCz

31 26 25 21 20 16 15 11 10 0
COPz MF rt rd 0
0100xx* 00000 000 0000 OOOO
6 5 5 5 11
Format:
MFCz rt, rd
Description:

The contents of coprocessor register rd of coprocessor z are loaded into
general register rt.

Operation:

32 T: data « CPR[z,rd]
T+1: GPR][rt] « data
64 T: if rdg = 0 then
data «— CPR(z,rdy 1| 0l31..0
else
data — CPR(z,rdy ;|| Olss...32
endif
T+1: GPR[r] — (datag;)®? || data

Exceptions:

Coprocessor unusable exception

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

A-110 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MFCz

Opcode Bit Encoding:

Move From Coprocessor
(continued)

MFCz

MFCZ Bit#31 30 29

28 27 26 25 24 23 22 21 0
Mrcol 0 | 1 0|0 0 0 0| O 0| O 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
mMec1| 0 | 1 0| O 0 1 0| O 0] O 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
MEc2| O | 1 0| o0 1 0 0| O 0| O 0
o _
Y \/]
Opcode ‘ Coprocessor Suboperation
Coprocessor Unit Number

MIPS R4000 Microprocessor User's Manual

A-111

Appendix A

MFHI

Move From HI M FH'

31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFHI
000000 |[0OOO0O0O0OOCOOO 00000 010000
6 10 5 5 6
Format:
MFHI rd
Description:
The contents of special register HI are loaded into general register rd.
To ensure proper operation in the event of interruptions, the two
instructions which follow a MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIV, DIVU,
MTHI, DMULT, DMULTU, DDIV, DDIVU.
Operation:
32,64 T: GPR[rd] « HI
Exceptions:
None
A-112

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MFLO

Move From Lo M FLO

31 26 25 16 15 1110 6 5 0
SPECIAL 0 rd 0 MFLO
000000 |00 0000O0O0OO0QO0O 00000 010010
6 10 5 5 6
Format:
MFLO rd
Description:
The contents of special register LO are loaded into general register rd.
To ensure proper operation in the event of interruptions, the two
instructions which follow a MFLO instruction may not be any of the
instructions which modify the LO register: MULT, MULTU, DIV, DIVU,
MTLO, DMULT, DMULTU, DDIV, DDIVU.
Operation:
32,64 T: GPRJrd] « LO
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-113

Appendix A

MTCO

Move To

System Control Coprocessor

MTCO

31 26 25 21 20 16 15 1110 0
COPO MT rt rd 0
010000 00100 000 0000 0000
6 5 5 5 11
Format:
MTCO rt, rd
Description:
The contents of general register rt are loaded into coprocessor register rd
of CPO.
Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.
Operation:
32,64 T data — GPR]r]
T+1: CPR[0,rd] ~ data
Exceptions:
Coprocessor unusable exception
A-114 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MTCz Move To Coprocessor MTCz
3T 0

26 25 21 20 16 15 11 10
COPz MT rt rd 0
0100xx* 00100 000 0000 00O0O
6 5 5 5 11
Format:
MTCz rt, rd
Description:

The contents of general register rt are loaded into coprocessor register rd
of coprocessor z.

Operation:

32 T:. data « GPRJr]
T+1: CPR[z,rd] ~ data

64 T: data — GPR[rt]3; o

T+1: ifrdg =0
CPR[z,rdy4 11/ 0] — CPRI[z, rdy_1 || Oles.. 32 || data
else
CPR[Z,I’d4m1 ” O] ~ data || CPR[Z,rd4”_l ” 0]31”_0
endif
Exceptions:

Coprocessor unusable exception

*Opcode Bit Encoding:

MTCZ Bit#31 30 29 28 27 26 25 24 23 22 21 0
copo| O | 1 0| O 0 0 0|0 1|0 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
cop1| O | 1 0| O 0 1 0O 110 0
Bit#31 30 29 28 27 26 25 24 23 22 21 0
cop2| O |1 0| O 1 0 0|0 1|0 0
o _
\/] '
Opcode Coprocessor Unit Number Coprocessor Suboperation

MIPS R4000 Microprocessor User's Manual A-115

Appendix A

MTHI Move To Hl

MTHI

31 26 25 21 20 65 0
SPECIAL rs 0 MTHI
000000 000 00000O0OOOOOOO 010001
6 5 15 6
Format:
MTHI rs
Description:

The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register LO are undefined.

Operation:
32,64 T-2: HI « undefined
T-1: HI « undefined
T: HI < GPRJrs]
Exceptions:
None

A-116

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MTLO Move To LO MTLO

31 26 25 2120 65 0
SPECIAL rs 0 MTLO
000000 000000000000000O 010011
6 5 15 6
Format:
MTLO rs
Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register HI are undefined.

Operation:
32,64 T-2: LO ~ undefined
T-1: LO ~ undefined
T: LO < GPRJrs]
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-117

Appendix A

MULT Multiply MULT
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt 0 MULT
000000 000000 00O0O 011000
6 5 5 10 6
Format:
MULT rs, rt
Description:
The contents of general registers rs and rt are multiplied, treating both
operands as 32-bit 2’'s complement values. No integer overflow exception
occurs under any circumstances. In 64-bit mode, the operands must be
valid 32-bit, sign-extended values.
When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.
A-118 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MULT

Multiply

(continued)

MULT

Operation:
32 T-2: LO « undefined
HI « undefined
T-1: LO ~ undefined
HI « undefined
T t « GPRJrs] * GPRJrt]
HI — 163..32
64 T-2: LO « undefined
HI ~ undefined
T-1: LO « undefined
HI « undefined
T: t — GPR[I’S]31.“0 * GPR[rt]31m0
LO - (tgl)zz Il ta1..0
HI « (t63)° [l t63...32
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-119

Appendix A

MULT

U

Multiply Unsigned

MULTU

31 26 25 21 20 16 15 5
SPECIAL rs rt 0 MULTU
000000 00 0000O0O0O0O 011001
6 5 5 10 6
Format:
MULTU rs, rt
Description:

The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. In 64-bit mode, the operands

must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is

loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating

reads of HI or LO from writes by a minimum of two instructions.

A-120

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

MULTU

Multiply Unsigned
(continued) M U LTU

Operation:
32 T-2: LO — undefined
HI « undefined
T-1: LO ~ undefined
HI ~ undefined
T t < (0]] GPR]rs]) * (0 || GPRIrt])
LO ~131.0
HI — l63..32
64 T-2: LO « undefined
HI « undefined
T-1: LO ~ undefined
HI « undefined
T t < (0 ||362PR[fS]31...0) * (0|l GPRrt]31..0)
LO - ('f31)32 [t31...0
HI < (t63)° Il t63..32
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-121

Appendix A

NOR Nor NOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format:
NOR rd, rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rtin a bit-wise logical NOR operation. The resultis placed
into general register rd.

Operation:

32,64 T: GPR[rd] « GPRJrs] nor GPR]rt]

Exceptions:

None

A-122 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

OR Or OR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 OR
000000 00000 100101
6 5 5 5 5 6
Format:
ORrd,rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

32,64 T: GPR[rd] —~ GPR][rs] or GPR]rt]

Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-123

Appendix A

OR| Or Immediate

ORI

31 26 25 21 20 16 15 0
ORI rs rt immediate
001101
6 5 5 16
Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical OR operation. The result is placed

into general register rt.

Operation:

32 T. GPR[rt] « GPRIrs]3;. 16 || (immediate or GPRIrs]5.)
64 T. GPR[rt] « GPRIrs]gs.. 16 || (immediate or GPRIrs]5._ o)

Exceptions:
None

A-124 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SB Store Byte SB

31 26 25 21 20 16 15 0
SB base rt offset
101000
6 5 5 16
Format:

SB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The least-significant byte of register
rt is stored at the effective address.

Operation:

32 T: VAddr — ((offset;s)1® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vVAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor ReverseEndian®)
byte — vAddr, o xor BigEndianCPU3
data — GPRIMle3 g+byte..o Il 0%
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1 3 || (PAddr, o xor ReverseEndian®)
byte — vAddr, o xor BigEndianCPU3
data — GPR[rtls3_grnyte...0 || 05
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual A-125

Appendix A

SC Store Conditional SC
31 26 25 21 20 16 15 0
SC base rt offset
111000

6 5 5 16

Format:

SC rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked instruction, or if an ERET instruction
occurs between the Load Linked instruction and this store instruction, the
store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CPO to be
enabled.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

A-126

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Store Conditional
SC (continued) SC

Operation:

32 T: VAddr — ((offset;5)'®|| offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze-1. 3 || (PAddry g xor (ReverseEndian || 0?))
data « GPR[rtgz.g+yte. o | 05
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 0% || LLbit

64 T: VAddr — ((offset;5)*®|| offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpgze.1. 3 || (PAddr, o xor (ReverseEndian || 0?))
data GPRIrtlgg.g+pyte...o Il 05
if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 053] LLbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual A-127

Appendix A

SCD Store Conditional Doubleword SCD
31 26 25 21 20 16 15 0

SCD base rt offset

111100

6 5 5 16
Format:
SCD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked Doubleword instruction, or if an
ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CPO to be
enabled.

If either of the three least-significant bits of the effective address is non-
zero, an address error exception takes place.

A-128

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SCD

Store Conditi onal Doubleword
(continued) SCD

If this instruction should both fail and take an exception, the exception
takes precedence.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64

T:

VAddr ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA)
data — GPR]rt]
if LLbit then
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] — 093] LLbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual A-129

Appendix A

SD Store Doubleword SD
31 26 25 21 20 16 15 0
SD base rt offset
111111
6 5 5 16
Format:
SD rt, offset(base)
Description:
The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.
If either of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.
This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.
Operation:

64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)

data — GPRJrt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

A-130

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDCz

Store Doubleword S DCZ

From Coprocessor

31

26 25 21 20 16 15 0

SDCz
1111xx*

base rt offset

6

Format

SDCz rt, offset(base)

Description:

Operat

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory
location. The data to be stored is defined by individual coprocessor
specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CPO.

This instruction is undefined when the least-significant bit of the rt field is
non-zero.

ion:

32

64

T: VAddr ((offset;5)'8 || offset;s o) + GPR[base]
(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data - COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

T: VAddr ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
data — COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

*See the table, “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-131

Appendix A

SDCz

Exceptions:

Store Doubleword
From Coprocessor
(continued)

TLB refill exception
TLB invalid exception

TLB modification exception

Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SDCz

SDCZ gis31 30 20 28 27 26 0
sper| L] 1]t 1]o 1
Bit#31 30 29 28 27 26 0
e A A A
\ /H/_/
—~
SD opcode Coprocessor Unit Number

A-132

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDL

Store Doubleword Left S D |_

31 26 25 21 20 16 15 0

SDL
101100

base rt offset

6

Format:

SDL rt, offset(base)

Description:

This instruction can be used with the SDR instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
adoubleword boundary. SDL stores the left portion of the register into the
appropriate part of the high-order doubleword of memory; SDR stores the
right portion of the register into the appropriate part of the low-order
doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-endian)

address 8 | 8

register
9 110|11|12|13|14|15

address0 | O

112345 6] 7|0 |A[B[c|[D|E[F[G|H]|s24

SDL $24,1($0)

address8 | 8 | 9 | 10| 11|12|13|14]15

address0 |0 | B| C| D|E|F| G| H

after

MIPS R4000 Micro

processor User's Manual A-133

Appendix A

SDL

Store Doubleword Left
(continued) S D L

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction

exception.

Operation:

64

T:

vAddr — ((offset;5)*® || offset ;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze 1 3 || (PAddr, o xor ReverseEndiand)
If BigEndianMem = 0 then

pAddr « pAddrg; 5]l 03
endif
byte — vAddr, o xor BigEndianCPU3
data — 0°¥"'® || GPRIrtlg3_ 56-gbyte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

A-134

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDL

Store Doubleword Left
(continued)

SDL

Given a doubleword in a register and a doubleword in memory, the
operation of SDL is as follows:

SDL
Register | A | B | C| D | E| F | G| H

Memory I J K L M N @) P
BigEndianCPU =0 BigEndianCPU =1
offset offset
VAddr , destination type | EM BEM destination type | LEM BEM
0 I JKLMNOA| O 0 7 |ABCDEFGH]| 7 0 O
1 I JKLMNAB| 1 0O 6 || ABCDEF G| 6 0 1
2 I JKLMABC| 2 0O 5|1 JABCDEF | 5 0o 2
3 I JKLABCD| 3 0 4 ||l JKABCDE| 4 0o 3
4 | JKABCDE]| 4 0 3 |l JKLABCD]| 3 0 4
5 I JABCDEF| 5 0 2 (I JKLMABC| 2 0 5
6 | ABCDEFG| 6 0 1 (I JKLMNAB]|1 0 6
7 ABCDEFGH| 7 0O 0 |[I JKLMNOA|O 0o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr, o sent to memory
Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (R4000 in 32-bit mode)

MIPS R4000 Microprocessor User's Manual

A-135

Appendix A

SDR Store Doubleword Right SDR
31 26 25 21 20 16 15 0

SDR base rt offset

101101

6 5 5 16
Format:
SDR rt, offset(base)

Description:

This instruction can be used with the SDL instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
aboundary between two doublewords. SDR stores the right portion of the
register into the appropriate part of the low-order doubleword; SDL stores
the left portion of the register into the appropriate part of the low-order
doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to eight bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

memory

(big-endian) register

address8 | g | 9 |10|11|12|13| 14|15

addressO | o |1 |2|3|/4|5|6]|7

vefore [A|B[C[D]E[F[G[H] $24

memory SDR $24,4(%$0
(big-endian) $ ($0)
address8| g8 | 9 |10[11|12(13/14|15| after
addressO | E |F |G| H|4|5|6| 7
A-136 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SDR Store Doubleword Right SDR

(continued)

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

64 T: vAddr — ((offset;5)*|| offset ;5 o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3|l (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then

pAddr — pAddrpgze 3131 03

endif
byte — vAddr; o xor BigEndianCPU?®

data — GPR[It]s3_gspyte I| 05
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-137

Appendix A

SDR

Store Doubleword Right

(continued)

SDR

Given a doubleword in a register and a doubleword in memory, the

operation of SDR is as follows:

SDR
Register | A | B | C | D | E| F | G| H
Memory I J K L M N o P
BigEndianCPU =0 BigEndianCPU =1
o offset offset
VAddr 5 o destination vPe [v BEM destination vPe [Em BEM
0 ABCDEFGH| 7 0 0 |HJKLMNOP| O 7 0
1 BCDEFGHP| 6 1 0 [GHKLMNOP| 1 6 O
2 CDEFGHOP| 5 2 0 FGHL MNOP| 2 5 0
3 DEFGHNOP| 4 3 0 |EFGHMNOP| 3 4 0
4 EFGHMNOP| 3 4 0 DEFGHNOP| 4 3 0
5 FGHLMNOP| 2 5 0 CDEFGHOP| 5 2 0
6 GHKLMNOP| 1 6 0 |[BCDEFGHP| 6 1 0
7 HJKLMNOP| O 7 0 |ABCDEFGH| 7 0O O
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_,sent to memory
Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)
A-138 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SH

Store Halfword SH

31 26 25 21 20 16 15 0

SH
101001

base rt offset

6

Format:

SH rt, offset(base)
Description:

The

16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least-

sign

ificant bit of the effective address is non-zero, an address error

exception occurs.

Operation:

32 T

64 T

vAddr — ((offset;5)'® || offset;s o) + GPR[base]

(pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrps;zg.1 3 || (PAddr, o xor (ReverseEndian? || 0))
byte — vAddr, o xor (BigEndianCPU? || 0)

data — GPRIMlg3_gwyte..0 Il 04"

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)
vAddr — ((offset;5)*® || offset;s o) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1. 3 || (PAddr, g xor (ReverseEndian? || 0))
byte — vAddr, o xor (BigEndianCPU? || 0)

data — GPRI[tls3_grnyte...0 || 0¥

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception

Bus

error exception

Address error exception

MIPS R4000 Microprocessor User's Manual A-139

Appendix A

SLL Shift Left Logical SLL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SLL
000000 00000 000000
6 5 5 5 5 6
Format:
SLL rd, rt, sa
Description:

The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLL with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLL, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.

NOTE: SLL with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLL with a
zero shift to truncate 64-bit values, check the assembler you are using.

Operation:
32 T: GPR[rd] « GPR]rt]3;_g5 o] 05

64 T: s—0]lsa
temp — GPRIrtl31.s. o || 0°
GPRI[rd] — (tempz;)3? || temp

Exceptions:
None

A-140 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SLLV Shift Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format:
SLLV rd, rt, rs
Description:
The contents of general register rt are shifted left the number of bits
specified by the low-order five bits contained in general register rs,
inserting zeros into the low-order bits.
The result is placed in register rd.
In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLLV with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLLV, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.
NOTE: SLLV with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLLV with a
zero shift to truncate 64-bit values, check the assembler you are using.
Operation:
32 T: S « GP[rS]4_“0
GPRUm«-GPRUﬂ@LQMOHOS
64 T: s < O0]|GP[rsly g
temp -~ GPR[rt](31_s)_”O || 0s
GPRI[rd] — (tempz;)3? || temp
Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-141

Appendix A

SLT Set On Less Than SLT
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format:
SLT rd, rs, rt
Description:
The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.
The result is placed into general register rd.
No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.
Operation:
32 T: if GPR[rs] < GPR]rt] then
GPR[rd] — 0311
else
GPRJ[rd] — 032
endif
64 T: if GPR[rs] < GPR[rt] then
GPR[rd] — 0831
else
GPR[rd] — 054
endif
Exceptions:
None
A-142 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

S LT| Set On Less Than Immediate SLT|

31 26 25 21 20 16 15 0
SLTI rs rt immediate
001010
6 5 5 16
Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as signed integers, if rs is
less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

32 T: if GPR[rs] < (immediate;5)® || immediate;5 then
GPRI[rd] — 0311
else
GPR][rd] — 0%2
endif

64 T: if GPR[rs] < (immediate;5)*® || immediate;s_g then
GPR[rd] — 0831
else
GPR[rd] — 084
endif

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-143

Appendix A

SLTIU

Set On Less Than
Immediate Unsigned

SLTIU

31 26 25 21 20 16 15 0
SLTIU rs rt immediate
001011
6 5 5 16
Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if rs
is less than the sign-extended immediate, the result is set to one; otherwise

the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison

overflows.
Operation:
32 T if(0] GPRIrs]) < (immediate;5)*® || immediate;s o then
GPR[rd] — 0311
else
GPR[rd] ~ 0%2
endif
64 T: if (0] GPRIrs]) < (immediate;5)* || immediate;s o then
GPR[rd] — 0831
else
GPR[rd] — 084
endif
Exceptions:
None

A-144

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

S I_TU Set On Less Than Unsigned S LTU
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SLTU
000000 00000 | 101011
6 5 5 5 5 6

Format:

SLTUrd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:
32 T: if (0] GPR[rs]) <0 || GPR[rt] then
GPR[rd] — 0311
else
GPRJ[rd] — 032
endif
64 T: if (0| GPRIrs]) < 0 || GPR]rt] then
GPR[rd] — 0831
else
GPR[rd] — 084
endif
Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-145

Appendix A

SRA Shift Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRA
000000 00000 000011
6 5 5 5 5 6

Format:
SRA rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] « (GPRIrt]31)%? || GPRI[rt] 31 _sa

64 T: s—0]sa
temp — (GPRrtl3;)® || GPRIrt] 31 ¢
GPRI[rd] — (tempgz;)®? || temp

Exceptions:

None

A-146 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

S RAV Arithﬁwr(]eigc I?/igrri]at\ble S RAV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, sign-extending
the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s < GPR[rs]4. 9
GPRIrd] — (GPRIrt]31)° || GPRIrt]a1..

64 T: s« GPR[rsl4 o
temp — (GPRIrt]31)® || GPRI[rt]3; s
GPRI[rd] - (tempgz;)3? || temp

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-147

Appendix A

SRL Shift Right Logical SRL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 rt rd sa SRL
ooo0o00O0 00000 000010
6 5 5 5 5 6

Format:
SRL rd, rt, sa
Description:

The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] « 0% || GPR[rtl31. sa

64 T: s~0]sa
temp — 0% || GPR{rt]3; ¢
GPRIrd] — (tempg;)3? || temp

Exceptions:
None

A-148 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SRLV

Shift Right Logical Variable

SRLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SRLV
000000 00000 000110
6 5 5 5 5 6
Format:
SRLV rd, rt, rs
Description:
The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.
The result is placed in register rd.
In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.
Operation:
32 T: s < GPR[rsls. o
GPR[rd] « 0° || GPR[rtl3; <
64 T:. s~ GPR[rs]s g
temp — 0% || GPR[rtl3; ¢
GPR([rd] — (temp3;)3? || temp
Exceptions:
None

MIPS R4000 Microprocessor User's Manual

A-149

Appendix A

SUB Subtract SUB
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SUB
000000 00000 100010
6 5 5 5 5 6
Format:
SUBrd, rs, rt
Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd. In 64-bit mode, the operands must be valid sign-extended, 32-
bit values.
The only difference between this instruction and the SUBU instruction is
that SUBU never traps on overflow.
An integer overflow exception takes place if the carries out of bits 30 and
31 differ (2’s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.
Operation:
32 T: GPR[rd] — GPR[rs] — GPR]rt]
64 T:. temp — GPR]rs]- GPR]rt]
GPRIrd] « (tempz1)* || tempa;_o
Exceptions:
Integer overflow exception
A-150 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SUBU

Subtract Unsigned SU BU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 SuBU
000000 00000 100011

6 5 5 5 5 6

Format:
SUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of
general register rs to form a result.
The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the SUB instruction is
that SUBU never traps on overflow. No integer overflow exception occurs
under any circumstances.

Operation:

32 T: GPR[rd] — GPR[rs] — GPR]rt]

64 T:. temp « GPR[rs]- GPRIrt]

GPRIrd] — (tempay)* || tempa; o

Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-151

Appendix A

S\W Store Word S\W

31 26 25 21 20 16 15 0
SwW base rt offset
101011
6 5 5 16
Format:

SW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

32 T: VAddr — ((offset;5)t® || offset;s o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — GPRI[rtls3.geyte || 05
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
64 T: VvAddr — ((offset;5)*® || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — GPRI[rtls3.geyte || 05
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception TLB invalid exception
TLB modification exception Bus error exception

Address error exception

A-152 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SWCZ Store Word From Coprocessor SWCZ

31 26 25 21 20 16 15 0
SWCz base rt offset
1110xx*
6 5 5 16
Format:
SWCz rt, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a word,
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor specifications.
This instruction is not valid for use with CPO.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

Operation:

32 T: vAddr — ((offset;5)'8 Il offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*8 || offset;s o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vVAddr, DATA)
pAddr — pAddrps;ze.1 3 || (PAddr, o xor (ReverseEndian || 0%)
byte — vAddr, o xor (BigEndianCPU || 0%)
data — COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MIPS R4000 Microprocessor User's Manual A-153

Appendix A

SWCz

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

Store Word From Coprocessor
(Continued) SWCz

SWCzZ Bit#31 30 29 28 27 26

0
sweil 11|10)0 |1
Bit#31 30 29 28 27 26 0
swee| 111010

. —~ /H/—J

SW opcode Coprocessor Unit Number

A-154

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SWL

31 26 25 21 20 16 15

Store Word Left SWL
0

SWL
101010

base rt offset

6

Format:

SWL rt, offset(base)

Description:

This instruction can be used with the SWR instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
aword boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory; SWR stores the right
portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory

(big-endian) register

address 4

4 5 6 7

address 0

0 1 2 before ‘ A‘ B‘ C‘ D‘$24

w

SWL $24,1($0)

address 4

|

address 0

after

-
o] A|] B| c|

MIPS R4000 Microprocessor User's Manual A-155

Appendix A

Store Word Left
SWL (Continued) SWL

Operation:

32 T: VAddr — ((offset;5)® || offset ;5 o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrpg;ze 1 3 || (PAddr, o xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr — pAddrs; » || 02
endif
byte — vAddr, o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data 032]| 028" || GPRIrtl3; o4 grnyte
else
data — 02*8PYe || GPRIrtl3; o4.gwnyte I 0%
endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*8 || offset ;5 o) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr — pAddrps;ze _1 3|l (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrg; 5 || 0°
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 032 || 0248DY!® || GPRIrtl3; 24.g+hyte
else
data — 0248PY® || GPRIrtl3; o4.gwnyte I 0%
endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)

A-156 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SWL

Store Word Left
(Continued)

SWL

Given a doubleword in a register and a doubleword in memory, the
operation of SWL is as follows:

SWL
Register | A | B C| Db | E|F| G|H
Memory I J K L M N @] P
BigEndianCPU =0 BigEndianCPU =1
offset offset
vAddr 5 o destination type LEM BEM destination type | | EM BEM
0 I JKLMNOE| O 0 7 |[EFGHMNOP| 3 4 0
1 I JKLMNEF| 1 0O 6 [| EFGMNOP| 2 4 1
2 I JKLMEFG| 2 0 5 I JEFMNOP| 1 4 2
3 I JKLEFGH| 3 0O 4 |1 JKEMNOP| O 4 3
4 I JKEMNOP| O 4 3 |I J KLEFGH| 3 0 4
5 I JEFMNOP| 1 4 2 I J KLMEF G| 2 0 5
6 I EFGMNOP| 2 4 1 |1 J KLMNEF| 1 0 6
7 EFGHMNOP| 3 4 0 |I JKLMNOE| O o 7
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr, o sent to memory
Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
MIPS R4000 Microprocessor User's Manual A-157

Appendix A

SWR

31 26 25 21 20 16 15

Store Word Right SWR
0

base rt offset

Format:

SWR rt, offset(base)

Description:

This instruction can be used with the SWL instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
a boundary between two words. SWR stores the right portion of the
register into the appropriate part of the low-order word; SWL stores the
left portion of the register into the appropriate part of the low-order word
of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. Italters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

memory

(big-endian) register

address 4

4 5 6 7

address 0

before \A\B\C\D\$24

0 1 2 3

SWR $24,1($0)

address 4

address 0

3 after

A-158

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Store Word Right
SWR (Continued) SWR

Operation:

32 T: VAddr — ((offset;5) || offset 15_o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg 1 3 || (PAddr, o xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr — pAddrs; , || 02
endif
byte — vAddr, o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 0%2 || GPRIrt]3_grpyte. .o I| 05
else
data — GPR[rtl31-gyte. .0 || 08 || 032
endif
Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: VAddr — ((offset;5)*8 || offset 15_o) + GPR[base]
(pAddr, uncached) — AddressTranslation (vAddr, DATA)
pAddr — pAddrps;zg 1 3 || (PAddr, o xor ReverseEndian®)
If BigEndianMem = 0 then
pAddr — pAddrs; » || 02
endif
byte — vAddr; o xor BigEndianCPU?
if (vAddr, xor BigendianCPU) = 0 then
data — 0%2 || GPRIrt]3_grpyte. o | 05
else
data — GPR[rtl31-gyte. .0 || 08 || 032
endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-159

Appendix A

Store Word Right
SWR (Continued) SWR

Given a doubleword in a register and a doubleword in memory, the
operation of SWR is as follows:

SWR
Register A B C D E F G H
Memory | J K L M N O P
BigEndianCPU =0 BigEndianCPU =1
offset offset
VAddr ; o destination vPe [ev BEM destination tyPe [\ EM BEM
0 I JKLEFGH| 3 0 4 |HJ KLMNOP|O 7 0
1 I JKLFGHP | 2 1 4 |[GHKLMNOP |1 6 O
2 I JKLGHOP | 1 2 4 |[FGHLMNOP| 2 5 0
3 I JKLHNOP | O 3 4 |[EFGHMNOP | 3 4 0
4 EFGHMNOP| 3 4 0 | JKLHNOP]|O 3 4
5 FGHLMNOP | 2 5 0 |l JKLGHOP |1 2 4
6 GHKLMNOP| 1 6 0 |I JKLFGHP | 2 1 4
7 HJKLMNOP| O 7 0 |1l JKLEFGH| 3 0 4
LEM Little-endian memory (BigEndianMem = 0)
BEM BigendianMem =1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr,_,sent to memory
Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

A-160 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

SYNC Synchronize SYNC

31 26 25 6 5 0
SPECIAL 0 SYNC
000000 0000 0000 0000 OOOO 00OO 001111
6 20
Format:
SYNC
Description:
The SYNC instruction ensures that any loads and stores fetched prior to the
present instruction are completed before any loads or stores after this
instruction are allowed to start. Use of the SYNC instruction to serialize
certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:
Processor A Processor B
SW R1, DATA 1: LW R2, FLAG
LI R2,1 BEQ R2, RO, 1B
SYNC NOP
SW R2, FLAG SYNC
LW R1, DATA
The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise
result in reading stale data. For processors which only execute loads and
stores in order, with respect to shared memory, this instruction is a NOP
LL and SC instructions implicitly perform a SYNC.
This instruction is allowed in User mode.
Operation:
32,64 T: SyncOperation()
Exceptions:

None

MIPS R4000 Microprocessor User's Manual A-161

Appendix A

SYSCALL systemcal SYSCALL

31 26 25 6 5 0
SPECIAL Code SYSCALL
000000 001100
6 20 6
Format:
SYSCALL
Description:
A system call exception occurs, immediately and unconditionally
transferring control to the exception handler.
The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.
Operation:
32,64 T: SystemCallException
Exceptions:
System Call exception
A-162 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

"EQ Trap If Equal TEQ
31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TEQ
000000 110100
6 5 5 10 6

Format:
TEQ s, rt
Description:

The contents of general register rt are compared to general register rs. If
the contents of general register rs are equal to the contents of general

register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word

containing the instruction.

Operation:

32,64

T: if GPR[rs] = GPR]rt] then
TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual

A-163

Appendix A

TEQ| Trap If Equal Immediate TEQ

31 26 25 21 20 16 15 0
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] = (immediate;5)'° || immediate;s o then
TrapException
endif

64 T: if GPR[rs] = (immediate;5)*® || immediate;s o then
TrapException
endif

Exceptions:

Trap exception

A-164 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TGE Trap If Greater Than Or Equal TGE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGE
000000 110000
6 5 5 10 6

Format:
TGE rs, rt
Description:

The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents
of general register rs are greater than or equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

32,64 T: if GPR[rs] = GPR]rt] then
TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual A-165

Appendix A

TG El Trap If Greater Than Or Equal Immediate

TGEI

31 26 25 21 20 16 15 0
REGIMM rs TGEI immediate
000001 01000
6 5 5 16
Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are greater than or equal to the sign-

extended immediate, a trap exception occurs.

Operation:
32 T: if GPR[rs] = (immediate;5)'® || immediate;s o then
TrapException
endif
64 T: if GPR[rs] = (immediate;5)*® || immediate;s o then
TrapException
endif
Exceptions:

Trap exception

A-166

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

Trap If Greater Than Or Equal
TG E I U Immediate Unsigned TG EI U

31 26 25 21 20 16 15 0
REGIMM rs TGEIU immediate
000001 01001
6 5 5 16
Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:
32 T: H(O”GPRUﬂ)z«)”Gmmemmewfﬁnhnmemmeﬁm@ﬂwn
TrapException
endif
64 T: if (0] GPR[rs]) = (0 || (immediate;5)*® || immediate;5 o) then
TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual A-167

Appendix A

TG E U Trap If Greater Than Or Equal Unsigned TG E U

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TGEU
000000 110001
6 5 5 10 6

Format:
TGEU rs, rt

Description:
The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.
The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

T: if (0 || GPRJrs]) = (0 || GPRJrt]) then

TrapException

endif

Exceptions:
Trap exception

A-168 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLBP

Probe TLB For Matching Entry TLB P

31

26 25 24 6 5 0

COPO
010000

CO 0 TLBP
1 0000000 0000 0O0OC0OOCOOQOO 001000

6

1 19 6

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose
contents match the contents of the EntryHi register. 1f no TLB entry
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references
associated with the instruction immediately after a TLBP instruction, nor
is the operation specified if more than one TLB entry matches.

Operation:

32 T Index— 1| 0%%|| undefined®

64 T. Index< 1[0 25| undefined®

foriin O...TLBEntries—1
if (TLB[|]9577 = EntryHi31.._12) and (TLB[|]76 or
(TLBIi]71...64 = EntryHiz_ o)) then
Index — 0% ||is o
endif
endfor

foriin 0... TLBEntries—1
if (TLB[i]167..141 and not (0*° || TLBIil216. 205))
= EntryHigg _13) and not (0" || TLB[i]16...205)) and
(TLBIi]140 or (TLBI[i]135...108 = EntryHi7_g)) then
Index — 0% ||is o
endif
endfor

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-169

Appendix A

TLBR Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO (6{0) 0 TLBR
010000 1 00000000000 0O0O0O0OO0OOOO 000001
6 1 19 6

Format:
TLBR
Description:

The G bit (which controls ASID matching) read from the TLB is written
into both of the EntryLo0 and EntryLol registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB
entry pointed at by the contents of the TLB Index register. The operation
is invalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

32 T: PageMask — TLB[Indexs gli127..96
EntryHi — TLB[Indexs_olgs._s4 and not TLB[Indexs ol127. 96
EntryLol —TLB[Indexs ols3 32
EntryLoO — TLB[Indexs_olz1..0

64 T: PageMask — TLB[Indexs gloss 192
EntryHl - TLB[lndeX5.__0]191_“128 and not TLB[lndeX5.1_0]255__.192
EntryLol —TLB[Indexs_oli27. 65 || TLB[Indexs_ oli40
EntryLOO - TLB[lndeX5___0]63___1 ” TLB[lnd8X5___0]14o

Exceptions:

Coprocessor unusable exception

A-170 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLBWI Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO (6{0) 0 TLBWI
010000 1 00000000000 0O0O0O0OO0OOOO oo0010
6 1 19 6
Format:
TLBWI
Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLoO and EntryLol registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded
with the contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of
the TLB Index register are greater than the number of TLB entries in the
processor.

Operation:

32,64T: TLB[Indexs o] «
PageMask || (EntryHi and not PageMask) || EntryLo1l || EntryLoO

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual A-171

Appendix A

TLBWR Write Random TLB Entry TLBWR

31 26 25 24 6 5 0
COPO (6{0) 0 TLBWR
010000 1 00000000000 0O00O0O0OO0OO0O0O 000110
6 1 19
Format:
TLBWR
Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLoO and EntryLol registers.

The TLB entry pointed at by the contents of the TLB Random register is
loaded with the contents of the EntryHi and EntryLo registers.

Operation:

32,64T: TLB[Randomg o]
PageMask || (EntryHi and not PageMask) || EntryLol || EntryLoO

Exceptions:

Coprocessor unusable exception

A-172 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLT

Trap If Less Than

TLT

31 26 25 21 20 6 5 0
SPECIAL rs rt code TLT
000000 110010
6 5 5 10 6
Format:
TLTrs, rt
Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception

occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word

containing the instruction.

Operation:

32,64

T: if GPR[rs] < GPR]rt] then
TrapException

endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual

A-173

Appendix A

TLTI

Trap If Less Than Immediate

TLTI

31 26 25 21 20 16 15 0
REGIMM rs TLTI immediate
000001 01010
6 5 5 16
Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:
32 T: if GPR(rs] < (immediate;5)*® || immediate;5 o then
TrapException
endif
64 T: if GPR([rs] < (immediate;5)*2 || immediate;5 o then
TrapException
endif
Exceptions:

Trap exception

A-174

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TLTI U Trap If Less Than Immediate Unsigned TLTI U

31 26 25 21 20 16 15 0
REGIMM rs TLTIU immediate
000001 01011
6 5 5 16
Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:
32 T: if (0] GPR[rs]) < (0| (immediatelS)16 || immediate s _q) then
TrapException
endif
64 T: if (0]l GPRIrs]) < (0 || (immediate;5)*® || immediate;5_,) then
TrapException
endif
Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual

A-175

Appendix A

TLTU

Trap If Less Than Unsigned

TLTU

31 26 25 21 20 16 15 0
SPECIAL rs rt code TLTU
000000 110011
6 5 5 10 6

Format:
TLTU rs, rt
Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as unsigned integers, if the contents of
general register rs are less than the contents of general register rt, a trap
exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word

containing the instruction.

Operation:

32, 64T:

if (0 || GPRYrs]) < (0 || GPR[rt]) then

TrapException

endif

Exceptions:

Trap exception

A-176

MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

TNE

Trap If Not Equal TNE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs rt code TNE
000000 110110
6 5 5 10 6
Format:
TNE rs, rt
Description:

The contents of general register rt are compared to general register rs. If
the contents of general register rs are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

32,64T: if GPR[rs] # GPR][rt] then

TrapException
endif

Exceptions:

Trap exception

MIPS R4000 Microprocessor User's Manual A-177

Appendix A

TN EI Trap If Not Equal Immediate TN E

31 26 25 21 20 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format:
TNEI rs, immediate
Description:
The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are not equal to the
sign-extended immediate, a trap exception occurs.
Operation:
32 T: if GPR[rs] # (immediate;5)*® || immediate;5 o then
TrapException
endif
64 T: if GPR]rs] # (immediate;5)*® || immediate;s o then
TrapException
endif
Exceptions:
Trap exception
A-178 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

XOR Exclusive Or XOR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs rt rd 0 XOR
000000 00000 100110
6 5 5 5 5 6
Format:
XORrd, rs, rt
Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical exclusive OR operation.

The result is placed into general register rd.

Operation:

32,64 T: GPRJ[rd] « GPR]rs] xor GPR]rt]

Exceptions:
None

MIPS R4000 Microprocessor User's Manual A-179

Appendix A

XORI Exclusive OR Immediate XOR

31 26 25 21 20 16 15 0
XORI rs rt immediate
001110
6 5 5 16
Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

32 T: GPR[r] « GPR]rs]xor (0'° || immediate)
64 T: GPR[rt] — GPR]rs] xor (0*® || immediate)

Exceptions:

None

A-180 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Details

CPU Instruction Opcode Bit Encoding

The remainder of this Appendix presents the opcode bit encoding for the
CPU instruction set (ISA and extensions), as implemented by the R4000.
Figure A-2 lists the R4000 Opcode Bit Encoding.

28...26 Opcode
31...29 0 1 2 3 4 5 6 7
0 SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COPO COP1 COP2 * BEQL BNEL | BLEZL | BGTZL
3 DADDIe |DADDIUe| LDLe LDRe * * * *
4 LB LH LWL LW LBU LHU LWR LWUe
5 SB SH SWL SW SDLe SDRe SWR |CACHE %
6 LL LWC1 LWC2 * LLDe LDC1 LDC2 LDeg
7 SC SWC1 SWC2 * SCDe SDC1 SDC2 SDe
2..0 SPECIAL function
5 3 0 1 2 3 4 5 6 7
0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR * * SYSCALL| BREAK * SYNC
2 MFEHI MTHI MFLO MTLO DSLLVe * DSRLVe | DSRAVe
3 MULT MULTU DIV DIVU DMULTe |IDMULTUg| DDIVe DDIVUe
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 * * SLT SLTU DADDe | DADDUe| DSUBe | DSUBUEe
6 TGE TGEU TLT TLTU TEQ * TNE *
7 DSLLe * DSRLe DSRAg | DSLL32¢ * DSRL32¢ | DSRA32¢
18...16 REGIMM rt
20...19 0 1 2 3 4 5 6 7
0 BLTZ BGEZ BLTZL BGEZL * * * *
1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 BLTZAL | BGEZAL | BLTZALL |BGEZALL * * * *
3 * * * * * * * *
23..21 COPzrs
25, 24 0 2 3 4 5 6 7
0 MF DMFe | CF ['y MT | DMTe | CT y
1 BC Y Y Y Y Y Y Y
2 co
3
Figure A-2 R4000 Opcode Bit Encoding
MIPS R4000 Microprocessor User's Manual A-181

Appendix A

oor\n—\owmn—-o'w

<|<|<|<]|o
<|<|<|<]|o
<|<|<|<|~

CPO Function

w

[TLBWR |

elslsls|slsls
eeeeeeegm
elslsls|slslsls
elslsls|s|lslsls|>
slslsls|slslsls|n
elslsls|slsls
elslsls|slslsls|~

Figure A-2 (cont.) R4000 Opcode Bit Encoding

Key:

Operation codes marked with an asterisk cause reserved
instruction exceptions in all current implementations and are
reserved for future versions of the architecture.

Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

Operation codes marked with a delta are valid only for R4000
processors with CP0O enabled, and cause a reserved instruction
exception on other processors.

Operation codes marked with a phi are invalid but do not cause
reserved instruction exceptions in R4000 implementations.

Operation codes marked with a xi cause a reserved instruction
exception on R4000 processors.

Operation codes marked with a chi are valid only on R4000.

Operation codes marked with epsilon are valid when the processor
is operating either in the Kernel mode or in the 64-bit non-Kernel
(User or Supervisor) mode. These instructions cause a reserved
instruction exception if 64-bit operation is not enabled in User or
Supervisor mode.

A-182

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Detalils

This appendix provides a detailed description of each floating-point unit
(FPU) instruction (refer to Appendix A for a detailed description of the
CPU instructions). The instructions are listed alphabetically, and any
exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate causes and the manner of handling exceptions are omitted
from the instruction descriptions in this appendix (refer to Chapter 7 for
detailed descriptions of floating-point exceptions and handling).

Figure B-3 at the end of this appendix lists the entire bit encoding for the
constant fields of the floating-point instruction set; the bit encoding for
each instruction is included with that individual instruction.

MIPS R4000 Microprocessor User's Manual B-1

Appendix B

B.1 Instruction Formats

There are three basic instruction format types:

= |-Type, or Immediate instructions, which include load and
store operations

= M-Type, or Move instructions

= R-Type, or Register instructions, which include the two-
and three-register floating-point operations.

The instruction description subsections that follow show how these three
basic instruction formats are used by:

= Load and store instructions

= Move instructions

= Floating-Point computational instructions
= Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions, defining coprocessor unit number one (CP1) as the floating-
point unit.

Each operation is valid only for certain formats. Implementations may
support some of these formats and operations through emulation, but
they only need to support combinations that are valid (marked V in Table
B-1). Combinations marked R in Table B-1 are not currently specified by
this architecture, and cause an unimplemented operation trap. They will
be available for future extensions to the architecture.

B-2

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Table B-1 Valid FPU Instruction Formats

Source Format

Operation -
Single Double Word Longword

ADD \Y \Y R

SUB

MUL

DIV

SQRT

(0[O0
(0|0 |O0|0| D

ABS

MOV

NEG

TRUNC.L

ROUND.L

CEIL.L

FLOOR.L

TRUNC.W

ROUND.W

CEIL.W

HMEGENEDEY ENEYEd RN Ed G RS Ed R

FLOOR.W

MEN R ENEG R EYEY R Ed R R Ed R R

CVT.S

CVvT.D

CVT.W

CVT.L

<

< <1< <
<

C

MIPS R4000 Microprocessor User's Manual B-3

Appendix B

The coprocessor branch on condition true/false instructions can be used
to logically negate any predicate. Thus, the 32 possible conditions require
only 16 distinct comparisons, as shown in Table B-2 below.

Table B-2 Logical Negation of Predicates by Condition True/False

Condition Relations Invalid

: ration

Mnernonic Code | CGreater | Less Equal |Unordered 52(22302 If

True False Than Than Unordered
F T 0 F F F F No
UN OR 1 F F F T No
EQ NEQ 2 F F T F No
UEQ OGL 3 F F T T No
OLT UGE 4 F T F F No
ULT OGE 5 F T F T No
OLE UGT 6 F T T F No
ULE OGT 7 F T T T No
SF ST 8 F F F F Yes
NGLE GLE 9 F F F T Yes
SEQ SNE 10 F F T F Yes
NGL GL 11 F F T T Yes
LT NLT 12 F T F F Yes
NGE GE 13 F T F T Yes
LE NLE 14 F T T F Yes
NGT GT 15 F T T T Yes

B-4 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Floating-Point Loads, Stores, and Moves

All movement of data between the floating-point coprocessor and
memory is accomplished by coprocessor load and store operations, which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and,
therefore, no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point coprocessor
and the processor by move to coprocessor and move from coprocessor
instructions. Like the floating-point load and store operations, move to/
from operations perform no format conversions and never cause floating-
point exceptions.

An additional pair of coprocessor registers are available, called Floating-
Point Control registers for which the only data movement operations
supported are moves to and from processor General Purpose registers.

Floating-Point Operations

The floating-point unit operation set includes:
- floating-point add
= floating-point subtract
= floating-point multiply
- floating-point divide
= floating-point square root
= convert between fixed-point and floating-point formats
= convert between floating-point formats
= floating-point compare

These operations satisfy the requirements of IEEE Standard 754
requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

MIPS R4000 Microprocessor User's Manual B-5

Appendix B

B.2 Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as fs,
ft, immediate, and so on) are shown in lower-case. The instruction name
(such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

In some instructions, the instruction subfields op and function can have
constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-point ADD
instruction we use op = COP1 and function = ADD. In other cases, asingle
field has both fixed and variable subfields, so the name contains both
upper and lower case characters. Bit encodings for mnemonics are shown
in Figure B-3 at the end of this appendix, and are also included with each
individual instruction.

In the instruction description examples that follow, the Operation section
describes the operation performed by each instruction using a high-level
language notation.

Instruction Notation Examples

The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[rf] ~ immediate || 0'®

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:

(immediate;5)*® || immediate;s o

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

B-6 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

B.3 Load and Store Instructions

In the R4000 implementation, the instruction immediately following a
load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width of

the FGRs.

When the FR bit in the Status register equals zero, the Floating-
Point General registers (FGRs) are 32-bits wide.

When the FR bit in the Status register equals one, the Floating-
Point General registers (FGRs) are 64-bits wide.

In the load and store operation descriptions, the functions listed in
Table B-3 are used to summarize the handling of virtual addresses and
physical memory.

Table B-3 Load and Store Common Functions

Function

Meaning

AddressTranslation

Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

MIPS R4000 Microprocessor User's Manual B-7

Appendix B

Figure B-1 shows the I-Type instruction format used by load and store
operations.

I-Type (Immediate)

31 26 25 21 20 16 15 0

offset

op is a 6-bit operation code
base is the 5-bit base register specifier

is a 5-bit source (for stores) or destination (for loads) FPA register

ft e
specifier

offset is the 16-bit signed immediate offset

Figure B-1 Load and Store Instruction Format

All coprocessor loads and stores reference aligned data items. Thus, for
word loads and stores, the access type field is always WORD, and the low-
order two bits of the address must always be zero.

For doubleword loads and stores, the access type field is always
DOUBLEWORD, and the low-order three bits of the address must always
be zero.

Regardless of byte-numbering order (endianness), the address specifies
that byte which has the smallest byte-address in the addressed field. For
a big-endian machine, this is the leftmost byte; for a little-endian machine,
this is the rightmost byte.

B-8 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

B.4 Computational Instructions

Computational instructions include all of the arithmetic floating-point

operations performed by the FPU.

Figure B-2 shows the R-Type instruction format used for computational
operations.

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5
COP1 fmt ft fs fd function
6 5 5 5 5 6

COP1 is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit sourcel register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-

bit function field

Figure B-2 Computational Instruction Format

The function field indicates the floating-point operation to be performed.

Each floating-point instruction can be applied to a number of operand

formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B-4.

Table B-4 Format Field Decoding

Code | Mnemonic Size Format

16 S single Binary floating-point

17 D double Binary floating-point

18 Reserved

19 Reserved

20 W single 32-bit binary fixed-point
21 L longword 64-bit binary fixed-point
22-31 Reserved

Table B-5 lists all floating-point instructions.

MIPS R4000 Microprocessor

User's Manual

B-9

Appendix B

Table B-5 Floating-Point Instructions and Operations

Code

(5:0) Mnemonic Operation
0 ADD Add
1 SuUB Subtract
2 MUL Multiply
3 DIV Divide
4 SQRT Square root
5 ABS Absolute value
6 MOV Move
7 NEG Negate
8 ROUND.L g\;)enr:/ert to 64-bit (long) fixed-point, rounded to nearest/
9 TRUNC.L Convert to 64-bit (long) fixed-point, rounded toward zero
10 CEIL.L Convert to 64-bit (long) fixed-point, rounded to +o
11 FLOOR.L Convert to 64-bit (long) fixed-point, rounded to -«
12 ROUND.W | Convert to single fixed-point, rounded to nearest/even
13 TRUNC.W | Convert to single fixed-point, rounded toward zero
14 CEIL.W Convert to single fixed-point, rounded to + o
15 FLOOR.W | Convert to single fixed-point, rounded to — oo
16-31 |- Reserved
32 CVT.S Convert to single floating-point
33 CVT.D Convert to double floating-point
34 - Reserved
35 - Reserved
36 CVT.W Convert to 32-bit binary fixed-point
37 CVT.L Convert to 64-bit (long) binary fixed-point
38-47 | - Reserved
48-63 | C Floating-point compare

B-10

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

In the following pages, the notation FGR refers to the 32 General Purpose
registers FGRO through FGR3L1 of the FPU, and FPR refers to the floating-
point registers of the FPU.

= When the FR bit in the Status register (SR(26)) equals zero, only
the even floating-point registers are valid and the 32 General
Purpose registers of the FPU are 32-bits wide.

< When the FR bit in the Status register (SR(26)) equals one, both
odd and even floating-point registers may be used and the 32
General Purpose registers of the FPU are 64-bits wide.

The following routines are used in the description of the floating-point
operations to retrieve the value of an FPR or to change the value of an FGR:

value « ValueFPR(fpr,fmt)

if SRog = 1 then /* 64-bit wide FGRs */
case fmt of
S, W:
value — FGR[fpr]s; o
return
D, L:
value «— FGR[fpr]
return
endcase
elseif fprg = 0 then /* valid specifier, 32-bit wide FGRs */
case fmt of
S, W:
value «— FGRJfpr]
return
D, L:
value — FGR[fpr+1] || FGR[fpr]
return
endcase
else /* undefined result for odd 32-bit reg #s */
value « undefined
endif

MIPS R4000 Microprocessor User's Manual B-11

Appendix B

StoreFPR(fpr, fmt, value)

if SRy = 1 then /* 64-bit wide FGRs */
case fmt of
S, W:
FGR][fpr] « undefined3? || value
return
D, L:
FGR[fpr] « value
return
endcase
elseif fprg = 0 then /* valid specifier, 32-bit wide FGRs */
case fmt of
S, W:
FGR[fpr+1] « undefined
FGR[fpr] « value
return
D, L:
FGR[pr'l] «— value63m32
FGR[fpr] “«— Value31___o
return
endcase
else /* undefined result for odd 32-bit reg #s */
undefined_result
endif

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

ABS.fmt st e ABS.fmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd ABS
00000 000101

6

5 5 5 5 6

Format:

Descri

ABS.fmt fd, fs

ption:

The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals invalid
operation.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

MIPS R4000 Microprocessor User's Manual B-13

Appendix B

ADD.f

mt Floating-Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd ADD
010001 000000
6 5 5 5 5 6

Format:
ADD.fmt fd, fs, ft

Description:
The contents of the FPU registers specified by fs and ft are interpreted in
the specified format and arithmetically added. The result is rounded as if
calculated to infinite precision and then rounded to the specified format
(fmt), according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.
This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B-14 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

BC1F P Coprocessor) - BC1F

31 26 25 21 20 1615 0
COP1 BC BCF offset
010001 01000 00000
6 5 5 16
Format:
BC1F offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1F.

Operation:

32 T-1: condition — not COCJ[1]
T: target — (offset;5)'* || offset || 02
T+1: if condition then
PC ~ PC + target
endif

64 T-1: condition — not COC[1]
T: target — (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
endif

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual B-15

Appendix B

Branch On FPU False Likel
BC]-FL r (Coprocessorsl) ey

BC1FL

31 26 25 21 20 1615 0
COP1 BC BCFL offset
010001 01000 00010
6 5 5 16
Format:
BC1FL offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the

branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1FL.

Operation:

32 T-1: condition — not COC[1]
T: target (offset;5)'* || offset || 02
T+1: if condition then
PC ~ PC + target

else
NullifyCurrentinstruction
endif
64 T-1: condition — not COCJ1]
T: target — (offset;s)*® || offset || 02

T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

Coprocessor unusable exception

B-16 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Branch On FPU True
BClT (Coprocessor 1)u BC]-T

31 26 25 21 20 16 15 0
COP1 BC BCT offset
010001 01000 00001
6 5 5 16
Format:
BCLT offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1T.

Operation:

32 T-1: condition — COCJ1]
T: target — (offset;5)** || offset || 02
T+1: if condition then
PC ~ PC + target
endif

64 T-1: condition -« COCJ1]
T: target — (offset;5)*® || offset || 02
T+1: if condition then
PC ~ PC + target
endif

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual B-17

Appendix B

BCITL “"™Copocessarny > BCI1TL

31 26 25 21 20 16 15 0
COP1 BC BCTL offset
010001 01000 00011
6 5 5 16
Format:
BCLTL offset
Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1TL.

Operation:
32 T-1: condition —« COCJ[1]
T: target — (offset;5)** || offset || 0

T+1: if condition then
PC ~ PC + target

else
NullifyCurrentinstruction
endif
64 T-1: condition — COC[1]
T: target — (offset;5)*® || offset || 0

T+1: if condition then
PC ~ PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

Coprocessor unusable exception

B-18 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Floating-Point

C.cond.fmt Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 6 5 43 0
COP1 fmt ft fs 0 FC* cond*
010001 00000
6 5 5 5 5 2 4
Format:

C.cond.fmt fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format, fmt, and arithmetically compared.

A result is determined based on the comparison and the conditions
specified in the cond field. If one of the values is a Not a Number (NaN),
and the high-order bit of the cond field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is available
for testing with branch on floating-point coprocessor condition
instructions. There must be at least one instruction between the compare
and the branch.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible results: less than, equal, greater
than, and unordered. The last case arises when one or both of the
operands are NaN; every NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = -0.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

*See “FPU Instruction Opcode Bit Encoding” at the end of Appendix B.

MIPS R4000 Microprocessor User's Manual B-19

Appendix B

C.cond.fmt ~ FOEpaFe C.cond.fmt

(continued)

Operation:
T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less — false
equal — false
unordered — true
if cond; then
signal InvalidOperationException
endif
else
less — ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal « ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered - false
endif
condition — (cond, and less) or (cond; and equal) or
(condg and unordered)
FCR[31],3 « condition
COC[1] « condition

Exceptions:
Coprocessor unusable
Floating-Point exception
Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

B-20 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

CEIL.L.fmt Camieiongs CEIL.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEIL.L
010001 00000 001010
6 5 5 5 5 6

Format:
CEIL.L.fmtfd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +o (2).

This instruction is valid only for conversion from single- or double-
precision floating-point formats. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of 253 to 283 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 25%-1 is returned.

MIPS R4000 Microprocessor User's Manual B-21

Appendix B

CEIL.L.fmt Floating-Point CEIL.L.fmt

Ceiling to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-22

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

CEILW.fmt Cefingosinge CEIL.W.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CEILW
010001 00000 001110
6 5 5 5 5 6

Format:
CEIL.W.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +o (2).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of —231 to 231 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%1-1 is returned.

MIPS R4000 Microprocessor User's Manual B-23

Appendix B

CEILW.fmt ~.oating-Point =~ W fmt

Ceiling to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-24 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Move Control Word From FPU
CFC1 (Coprocessor 1) CFC1

31 26 25 21 20 16 15 11 10 0
COP1 CF rt fs 0
010001 00010 000 0000O0O0O0O
6 5 5 5 11
Format:
CFC1rt, fs
Description:

The contents of the FPU control register fs are loaded into general register
rt.

This operation is only defined when fs equals 0 or 31.

The contents of general register rt are undefined for the instruction
immediately following CFCL.

Operation:

32 T: temp ~ FCR[fs]
T+1: GPR[rt] ~ temp

64 T: temp ~ FCR[fs]
T+1: GPR[rt] — (temps;)%? || temp

Exceptions:

Coprocessor unusable exception

MIPS R4000 Microprocessor User's Manual B-25

Appendix B

CTC1

Move Control Word To FPU
(Coprocessor 1) CTC 1

31

26 25 21 20 16 15 11 10 0

CT rt fs 0
00110 000 0000O0O0O0O0

5 5 5 11

Format

CTC1rt, fs

Description:

Operat

The contents of general register rt are loaded into FPU control register fs.
This operation is only defined when fs equals 0 or 31.

Writing to Control Register 31, the floating-point Control/Status register,
causes an interrupt or exception if any cause bit and its corresponding
enable bit are both set. The register will be written before the exception
occurs. The contents of floating-point control register fs are undefined for
the instruction immediately following CTCL1.

ion:

32

64

T: temp — GPR]rt]
T+1: FCR[fs] ~ temp
COC[1] ~ FCR[31]53

T: temp - GPR[rt]3; ¢
T+1: FCR[fs] ~ temp
COC[1] ~ FCR[31]53

Excepti

Coproc

ons:

Coprocessor unusable exception
Floating-Point exception

essor Exceptions:

Unimplemented operation exception
Invalid operation exception

Division by zero exception

Inexact exception

Overflow exception

Underflow exception

B-26

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

CVT.D.fmt comettpome CVT.D.fmt

Floating-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt 0 fs fd CVT.D
00000 100001

6

5 5 5 5 6

Format:

CVT.D.fmtfd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in
the specified source format, fmt, and arithmetically converted to the
double binary floating-point format. The result is placed in the floating-
point register specified by fd.

This instruction is valid only for conversions from single floating-point
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

Underflow exception

MIPS R4000 Microprocessor User's Manual B-27

Appendix B

CVT.Lfmt Sooetmions CVT.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.L
010001 00000O 100101
6 5 5 5 5 6

Format:

CVT.L.fmtfd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversions from single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —283 10 283_1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%-1 is returned.

Operation:

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-28 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Floating-Point

CVT.S.fmt Convert to S|ng|e CVT.S.fmt

Floating-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.S
010001 00000 100000
6 5 5 5 5 6

Format:
CVT.S.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
binary floating-point format. The result is placed in the floating-point
register specified by fd. Rounding occurs according to the currently
specified rounding mode.
This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))
Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

Underflow exception

MIPS R4000 Microprocessor User's Manual B-29

Appendix B

CVT.W.fmt

Floating-Point
Convert to
Fixed-Point Format

CVT.W.fmt

31

26 25

21 20

16 15

11 10

6

COP1
010001

fmt

00000

fs

fd

CVT.W
100100

6

6

Format:

CVT.W.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversion from a single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of —2%! to 231-1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 _1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-30 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

DIV.Tmt Floating-Point Divide DIV.Tmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd DIV
000011

6

5 5 5 5 6

Format:

Descri

DIV.fmt fd, fs, ft
ption:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the fs field is divided by
the value in the ft field. The result is rounded as if calculated to infinite
precision and then rounded to the specified format, according to the
current rounding mode. The result is placed in the floating-point register
specified by fd.

This instruction is valid for only single or double precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T:

StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception Invalid operation exception
Division-by-zero exception Inexact exception
Overflow exception Underflow exception

MIPS R4000 Microprocessor User's Manual B-31

Appendix B

Doubleword Move From
DM FC]— Floating-Point Coprocessor DM FCl

31 26 25 21 20 16 15 1110 0
COP1 DMF rt fs 0
010001 00001 000 0000 0O0O0Q
6 5 5 5 11
Format:
DMFC1rt, fs
Description:

The contents of register fs from the floating-point coprocessor is stored
into processor register rt.

The contents of general register rt are undefined for the instruction
immediately following DMFC1.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR is set, fs
may specify either odd or even registers.

Operation:

64 T: if SRy = 1 then /* 64-bit wide FGRs */
data — FGR[fs]
elseif fsy=0then /*valid specifier, 32-bit wide FGRs */
data — FGR][fs+1] || FGR]fs]
else /* undefined for odd 32-bit reg #s */
data « undefined®
endif

T+1: GPR]rt] ~ data

Exceptions:

Coprocessor unusable exception
Coprocessor Exceptions:

Unimplemented operation exception

B-32 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Doubleword Move To
DMTC]— Floating-Point Coprocessor DMTC]—

31 26 25 21 20 16 15 1110 0
COP1 DMT rt fs 0
010001 00101 000 0000 0000
6 5 5 5 11
Format:
DMTC1 rt, fs
Description:

The contents of general register rt are loaded into coprocessor register fs of
the CP1.

The contents of floating-point register fs are undefined for the instruction
immediately following DMTCL.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR equals
one, fs may specify either odd or even registers.

Operation:

64 T: data — GPR]rt]

T+1: if SRyg = 1then /*64-bit wide FGRs */

FGR][fs] — data

elseif fsg = 0 then /*valid specifier, 32-bit wide valid FGRs */
FGR[fs+1] ~ datags 3>
FGRI[fs] — dataz; g

else /* undefined result for odd 32-bit reg #s */
undefined_result

endif

Exceptions:

Coprocessor unusable exception
Coprocessor Exceptions:

Unimplemented operation exception

MIPS R4000 Microprocessor User's Manual B-33

Appendix B

FLOOR.L.fmt ‘Mot FLOOR.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd FLOOR.L
010001 00000 001011
6 5 5 5 5 6

Format:

FLOOR.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to -oo (3).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of 2% to 283 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

B-34 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

FLOOR.L.fmt FoangPont | OOR.L.fmt

Floor to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

MIPS R4000 Microprocessor User's Manual B-35

Appendix B

FLOORW.fmt oo oerse FLOOR.W.fmt

Fixed-Point Format

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt 0 fs fd FLOOR.W
00000 001111

6

5 5 5 5 6

Format:

FLOOR.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to —o (RM = 3).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of —2%1t0 2311, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
2311 is returned.

B-36

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

FLOOR.W.fmt [eainefomt 2| OOR.W.fmt

Floor to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

MIPS R4000 Microprocessor User's Manual B-37

Appendix B

Load Doubleword to FPU

_DC1 (Coprocessor 1) LDCl
31 26 25 21 20 16 15 0
LDC1 base ft offset
110101
6 5 5 16
Format:

LDCL1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of the doubleword at the memory location
specified by the effective address is loaded into registers ft and ft+1 of the
floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit of ft is non-zero.

In 64-bit mode, the contents of the doubleword at the memory location
specified by the effective address are loaded into the 64-bit register ft of the
floating point coprocessor.

The FR bit of the Status register (SR,g) specifies whether all 32 registers of
the R4000 are addressable. If FR equals zero, this instruction is not defined
when the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

B-38 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Load Doubleword to FPU
LDC]— (Coprocessor 1) LDC]—

(continued)

Operation:
32 T: vAddr — ((offset;5)'® || offset;s_) + GPR[base]
64 T: vAddr — ((offset;5)*® || offset;s_o) + GPR[base]
32,64 (pAddr, uncached) —~ AddressTranslation (vAddr, DATA)
data — LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SRy = 1 then /* 64-bit wide FGRs */
FGRJft] —~ data

elseif ftg = 0then /* valid specifier, 32-bit wide FGRs */
FGRI[ft+1] — datagz 3,
FGR[ft] - data31m0

else /* undefined result if odd */
undefined_result

endif

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual B-39

Appendix B

LWC1

Load Word to FPU
(Coprocessor 1)

LWC1

31

26 25

21 20

16 15

base

ft

offset

16

Format:

LWC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-Point
registers are addressable. If FR equals zero, LWC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, LWC1
loads the low 32-bits of both even and odd Floating-Point registers.

If either of the two least-significant bits of the effective address is non-zero,

an address error exception occurs.

B-40

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Load Word to FPU
LWC 1 (Ogopro?:réss%r 1) LWC 1

(continued)

Operation:
32 T: vAddr — ((offset;s)10 || offset;s o) + GPR[base]
64 T: VAddr — ((offset;5)*® || offset;s o) + GPR[base]
32,64 (pAddr, uncached) — AddressTranslation (vAddr, DATA)

pAddr — pAddrpgze.1_ 3 || (PAddr, o xor (ReverseEndian || 0%)
mem ~ LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte — vAddr, o xor (BigEndianCPU || 0%)
/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
if SRy = 1 then /* 64-bit wide FGRs */

FGRIft] — undefined3? || memgy ,guyte._gehyte
else /* 32-bit wide FGRs */

FGRIft] — memgzy.gsyte...8byte
endif

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

MIPS R4000 Microprocessor User's Manual B-41

Appendix B

M F FPU
M F C 1 (C%\:Jerocrgsr,gor 1) M F C 1

31 26 25 21 20 16 15 11 10 0
COP1 MF rt fs 0
010001 | 00000 00000000000
6 5 5 5 11
Format:
MFC1 rt, fs
Description:

The contents of register fs from the floating-point coprocessor are stored
into processor register rt.

The contents of register rt are undefined for the instruction immediately
following MFC1.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MFC1 stores either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFC1
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

32 T: data — FGR[fs]z1 o
T+1: GPR[rt] < data

64 T data ~ FGRIfs]l3; o
T+l: GPR[rt] — (datag;)®? || data

Exceptions:

Coprocessor unusable exception

B-42 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

MOV.fmt Floating-Point Move MOV.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd MOV
010001 00000 000110

5 5 5 5 6
Format:

MOV.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and are copied into the FPU register specified by fd.

The move operation is non-arithmetic; no IEEE 754 exceptions occur as a
result of the instruction.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

MIPS R4000 Microprocessor User's Manual B-43

Appendix B

MTC1 Conmecoasor) MTC1

31 26 25 21 20 16 15 11 10 0
COP1 MT rt fs 0
010001 00100 000 00000000
6 5 5 5 11
Format:
MTC1rt, fs
Description:

The contents of register rt are loaded into the FPU general register at
location fs.

The contents of floating-point register fs is undefined for the instruction
immediately following MTCL.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MTC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

32,64 T: data — GPRIrt]3; o
T+1: if SRyg=1then /*64-bit wide FGRs */
FGR[fs] — undefined®? || data
else /* 32-bit wide FGRs */
FGR][fs] — data
endif

Exceptions:

Coprocessor unusable exception

B-44 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

MUL.fmt Floating-Point Multiply MUL.fmt

31

26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd MUL
000010

6

5 5 5 5 6

Format:

MUL.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically multiplied. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

MIPS R4000 Microprocessor User's Manual B-45

Appendix B

NEG.fmt Floating-Point Negate NEG.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd NEG
010001 00000 000111
6 5 5 5 5 6

Format:
NEG.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic negation is taken (polarity of the sign-
bit is changed). The result is placed in the FPU register specified by fd.
The negate operation is arithmetic; an NaN operand signals invalid
operation.
This instruction is valid only for single- or double-precision floating-point
formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

B-46 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

ROUND.L.fmt [fezngPort ROUND.L.fmt

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ROUND.L
010001 00000 001000
6 5 5 5 5 6
Format:
ROUND.L.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of 2% to 283 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2% -1 is returned.

MIPS R4000 Microprocessor User's Manual B-47

Appendix B

ROUND.L.fmt eameront ROUND.L.fmt

Round to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-48

MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

ROUND.W.fmt Floating-Point - ROUND.W.fmt

Round to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd ROUND.W
010001 00000 001100
6 5 5 5 5 6
Format:
ROUND.W.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to the nearest/even
(RM =0).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of 281102811, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 _1 is returned.

MIPS R4000 Microprocessor User's Manual B-49

Appendix B

ROUND.W.fmt Floating-Point - ROUND.W.fmt

Round to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-50 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Store Doubleword from FPU
SDC]. (Coprocessor 1) SDCl
31 26 25 21 20 16 15 0

SDC1 base ft offset

111101

6 5 5 16
Format:
SDC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of registers ft and ft+1 from the floating-point
coprocessor are stored at the memory location specified by the effective
address. This instruction is not valid, and is undefined, when the least
significant bit of ft is non-zero.

In 64-bit mode, the 64-bit register ft is stored to the contents of the
doubleword at the memory location specified by the effective address.
The FR bit of the Status register (SR,g) specifies whether all 32 registers of
the R4000 are addressable. When FR equals zero, this instruction is not
defined if the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

MIPS R4000 Microprocessor User's Manual B-51

Appendix B

Store Doubleword from FPU
S DC 1 (Coprocessor 1) S DC 1

(continued)

Operation:
32 T: vAddr — (offset;)0 || offset;s o) + GPR[base]
64 T: VAddr — (offset;s)*® || offset;s o) + GPR[base]
32,64 (pAddr, uncached) — AddressTranslation (vAddr, DATA)

if SRy =1 /* 64-bit wide FGRs */
data —~ FGR]ft]
elseif ftg =0 then /* valid specifier, 32-bit wide FGRs */
data — FGR[ft+1] || FGRJft]
else /* undefined for odd 32-bit reg #s */
data « undefined®*
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

B-52 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

SQRT.fmt ‘&amdron SQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd SQRT
010001 00000 000100
6 5 5 5 5 6

Format:
SQRT.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted in
the specified format and the positive arithmetic square root is taken. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. If the value
of fs corresponds to -0, the result will be -0. The result is placed in the
floating-point register specified by fd.
This instruction is valid only for single- or double-precision floating-point
formats.
The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact exception

MIPS R4000 Microprocessor User's Manual B-53

Appendix B

SUB.fmt Floating-Point Subtract SUB.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd SUB
010001 000001
6 5 5 5 5 6
Format:
SUB.fmt fd, fs, ft
Description:
The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the ft field is subtracted
from the value in the fs field. The result is rounded as if calculated to
infinite precision and then rounded to the specified format, according to
the current rounding mode. The result is placed in the floating-point
register specified by fd. This instruction is valid only for single- or double-
precision floating-point formats.
The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.
Operation:
T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) — ValueFPR(ft, fmt))
Exceptions:
Coprocessor unusable exception
Floating-Point exception
Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception
B-54 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

Store Word from FPU
SWC 1 (Coprocessor 1) SWC 1

31 26 25 21 20 16 15 0
SWC1 base ft offset
111001
6 5 5 16
Format:
SWCL1 ft, offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of
register ft from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating-point
registers are addressable.

If FR equals zero, SWC1 stores either the high or low half of the 16 even
floating-point registers.

If FR equals one, SWC1 stores the low 32-bits of both even and odd
floating-point registers.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

MIPS R4000 Microprocessor User's Manual B-55

Appendix B

SWC1 “Coprocessor1) - SWC1

(continued)

Operation:
32 T: vAddr — ((offset;5)*® || offset;s o) + GPR[base]
64 T: vAddr — ((offset;5)*8 || offset;s o) + GPR[base]
32,64 (pAddr, uncached) —~ AddressTranslation (vAddr, DATA)

pAddr — pAddrps;ze.1 3 || (PAddr, qxor (ReverseEndian || 0%))
byte — vAddr, , xor (BigEndianCPU || 0%)
/* the bytes of the word are put in the correct byte lanes in
* “data” for a 64-bit path to memory */
if SRy = 1 then /* 64-bit wide FGRs */
data « FGRIftleg-g+byte..0 || 05
else /* 32-bit wide FGRs */
data ~ 0328'0Ye || FGRIft] || 08"P¥te
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

B-56 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

TRUNC.L.fmt _FeatingPont o yNC.L.fmt

Truncate to Long
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.L
010001 00000 001001
6 5 5 5 5 6
Format:
TRUNC.L.fmt fd, fs
Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of —2%3 to 2831, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 2%3-1 is returned.

MIPS R4000 Microprocessor User's Manual B-57

Appendix B

TRUNC.L.fmt _FeaingPont T yNC.L.fmt

Truncate to Long
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-58 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

TRUNC.W.fmt ,[eaneron TRUNC.W.fmt

Truncate to Single
Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd TRUNC.W
010001 00000 001101
6 5 5 5 5 6
Format:
TRUNC.W.fmt fd, fs
Description:

The contents of the FPU register specified by fs are interpreted in the
specified source format fmt and arithmetically converted to the single
fixed-point format. The resultis placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (RM =1).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of =23 to 2311, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
-23Lis returned.

MIPS R4000 Microprocessor User's Manual B-59

Appendix B

TRUNC.W.fmt _Floating-Point TRUNC.W.fmt

Truncate to Single
Fixed-Point Format
(continued)

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception

Overflow exception

B-60 MIPS R4000 Microprocessor User's Manual

FPU Instruction Set Details

FPU Instruction Opcode Bit Encoding

Opcode
28...26

31...29 0 1 2 3 4 5 6 7
0
1
2 COP1
3
4
5
6 LWC1 LDC1
7 SWC1 SDC1

sub
23..21

o5 o4 O 1 2 3 4 5 6 7
0 MF DMFn CF 5 MT DMTn CT 5
1 BC > 5 > 5 > >
2 S D 5 Ln) 5
3 5 5 b) 5) 5 5

18...16 br

20..19 O 1 2 3 4 5 6 7
0 BCF | BCT BCFL BCTL y y y y
1 y y y y y y y y
2 y y Y y y Y y Y
3 y Y y y y y Y y

Figure B-3 Bit Encoding for FPU Instructions

MIPS R4000 Microprocessor User's Manual B-61

Appendix B

2.0 function
5.3 0 1 2 3 4 5 6 7
0 ADD SUB MUL DIV SQRT ABS MOV NEG
1 |ROUND.LN| TRUNC.LN| CEIL.LN |FLOOR.LN|ROUND.W | TRUNC.W| CEILW |FLOOR.W
2 o 1) o o o o o o
3 1) o 1) o o 1) 1) o
4 CVT.S | CVT.D o) CVT.W | CVT.Ln bo) b}
5 o e} e} o 1) o) o
6 C.F C.UN C.EQ | CUEQ | C.OLT | C.ULT | C.OLE | C.ULE
7 C.SF | C.NGLE| C.SEQ | C.NGL | C.LT C.NGE | C.LE | C.NGT
Figure B-3 (cont.) Bit Encoding for FPU Instructions

Key:

y Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

0 Operation codes marked with a delta cause unimplemented
operation exceptions in all current implementations and are
reserved for future versions of the architecture.

n Operation codes marked with an eta are valid only when MIPS llI

instructions are enabled. Any attempt to execute these without
MIPS Il1 instructions enabled causes an unimplemented operation
exception.

B-62

MIPS R4000 Microprocessor User's Manual

Subblock Ordering

A block of data elements (whether bytes, halfwords, words, or
doublewords) can be retrieved from storage in two ways: in sequential

order, or using a subblock order. This chapter describes these retrieval
methods, with an emphasis on subblock ordering.

MIPS R4000 Microprocessor User's Manual C-1

Appendix C

C.1 Sequential Ordering

Sequential ordering retrieves the data elements of a block in serial, or
sequential, order.

Figure C-1 shows a sequential order in which byte 0 is taken first and byte
7 is taken last.

Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7

/

Byte O
taken first Byte 3 Byte 5
taken fourth taken sixth
Byte 1
Byte 4 Byte 6
taken second)
Byte 2 taken fifth taken seventh Byte 7
taken third taken last

Figure C-1 Retrieving a Data Block in Sequential Order

C.2 Subblock Ordering

Subblock ordering allows the system to define the order in which the data
elements are retrieved. The smallest data element of a block transfer for
the R400 is a doubleword, and Figure C-2 shows the retrieval of a block of
data that consists of 8 doublewords, in which DW?2 is taken first.

hexword (block)
A

octalword
- A N
quadword
Order of retrieval 2 3 0 1 6 7 4 5

| DWO | Dw1 | Dw2 | DW3 | Dw4 | DW5 | DW6 | DW7|

/

DWO
taken third Dw 3 DWS
taken second taken eighth
DW1
DW4 DW6
taken fourth
DWZ_ taken seventh taken fifth bwr
taken first taken sixth

Figure C-2 Retrieving Data in a Subblock Order

C-2 MIPS R4000 Microprocessor User's Manual

Subblock Ordering

Using the subblock ordering shown in Figure C-2, the doubleword at the
target address is retrieved first (DW?2), followed by the remaining
doubleword (DW3) in this quadword.

Next, the quadword that fills out the octalword are retrieved in the same
order as the prior quadword (in this case DWO is followed by DW 1). This
is followed by the remaining octalword (DW8, DW7, DW4, DW5), that fills
out the hexword.

It may be easier way to understand subblock ordering by taking a look at
the method used for generating the address of each doubleword as it is
retrieved. The subblock ordering logic generates this address by
executing a bit-wise exclusive-OR (XOR) of the starting block address with
the output of a binary counter that increments with each doubleword,
starting at doubleword zero (000,).

Using this scheme, Tables C-1 through Table C-3 list the subblock ordering
of doublewords for a 32-word block, based on three different starting-
block addresses: 0010,, 1011,, and 0101,. The subblock ordering is
generated by an XOR of the subblock address (either 0010,, 1011,, and
0101,) with the binary count of the doubleword (0000, through 1111,).
Thus, the eighth doubleword retrieved from a block of data with a starting
address of 0010, is found by taking the XOR of address 0010, with the
binary count of DWS8, 0111,. The result is 0101,, or DW5 (shown in Table
C-1).

The remaining tables illustrate this method of subblock ordering, using
various address permutations.

MIPS R4000 Microprocessor User's Manual C-3

Appendix C

Table C-1 Sequence of Doublewords Transferred Using Subblock Ordering: Address 0010,

Starting Block . Double Word
Cycle Address Binary Count Retrieved
1 0010 0000 0010
2 0010 0001 0011
3 0010 0010 0000
4 0010 0011 0001
5 0010 0100 0110
6 0010 0101 0111
7 0010 0110 0100
8 0010 0111 0101
9 0010 1000 1010
10 0010 1001 1011
11 0010 1010 1000
12 0010 1011 1001
13 0010 1100 1110
14 0010 1101 1111
15 0010 1110 1100
16 0010 1111 1101

C-4 MIPS R4000 Microprocessor User's Manual

Subblock Ordering

Table C-2 Sequence of Doublewords Transferred Using Subblock Ordering: Address 1011,

Starting Block . Double Word
Cycle Address Binary Count Retrieved
1 1011 0000 1011
2 1011 0001 1010
3 1011 0010 1001
4 1011 0011 1000
5 1011 0100 1111
6 1011 0101 1110
7 1011 0110 1101
8 1011 0111 1100
9 1011 1000 0011
10 1011 1001 0010
11 1011 1010 0001
12 1011 1011 0000
13 1011 1100 0111
14 1011 1101 0110
15 1011 1110 0101
16 1011 1111 0100

MIPS R4000 Microprocessor User's Manual C-5

Appendix C

Table C-3 Sequence of Doublewords Transferred Using Subblock Ordering: Address 0101,

Starting Block . Double Word
Cycle Address Binary Count Retrieved
1 0101 0000 0101
2 0101 0001 0100
3 0101 0010 0111
4 0101 0011 0110
5 0101 0100 0001
6 0101 0101 0000
7 0101 0110 0011
8 0101 0111 0010
9 0101 1000 1101
10 0101 1001 1100
11 0101 1010 1111
12 0101 1011 1110
13 0101 1100 1001
14 0101 1101 1000
15 0101 1110 1011
16 0101 1111 1010

C-6 MIPS R4000 Microprocessor User's Manual

Output Buffer Ai/At Control Mechanism

The speed of the R4000 output drivers is controlled by a negative feedback
loop that insures the drive-off times are only as fast as necessary to meet
the system requirement for single cycle transfers. This guarantees the
minimum ground bounce from L*(Ai/At) of the switching buffers,
consistent with the system timing requirements.

D.1 Mode Bits

Four bits are used to control the pull-up and pull-down delays. These bits
are initially set to the values in the mode bits InitN(3:0) for pull-up and
InitP(3:0) for pull-down. If the Ai/At control mechanism is enabled, it is
recommended to load the mode bits InitP(3:0) and InitN(3:0) to the values
which provide the slowest slew rate.

Under normal conditions, the Ai/At control mechanism is enabled to
compensate the output buffer delay for any changes in the temperature or
power supply voltage. The EnbIDPLL mode bit is set for this mode of
operation.

MIPS R4000 Microprocessor User's Manual D-1

Appendix D

For situations where the jitter associated with the operation of the Ai/At
control mechanism cannot be tolerated and where the variation in
temperature and supply voltage after ColdReset* is expected to be small,
the Ai/At control mechanism can be instructed to lock during ColdReset*
and thereafter retain its control values. The EnbIDPLLR mode bit is set
and EnbIDPLL is cleared for this mode of operation.

In addition, if both the EnbIDPLL and EnbIDPLLR mode bits are cleared,
the speed of the output buffers are set by the InitP(3:0) and InitN(3:0)
mode bits.

D.2 Delay Times

Currently, delays of 0.5T, 0.75T, and T are supported, corresponding to the
Drv0_50, Drv0_75, and Drv1 00 mode bits, where T is the MasterClock
period. Forexample, in Drv0_75 mode, the entire signal transmission path
including the clock-to-Q, output buffer drive time, board flight time, input
buffer delay, and setup time will be traversed in 0.75 * the MasterClock
period, plus or minus the jitter due to the Ai/At control mechanism.

All output drivers on the R4000, with the exception of the clock drivers, are
controlled by the Ai/At control mechanism. The delay due to the output
buffer drive time component of the SCAddr(17:0), SCOEB, SCWRB,
SCDCSB, and SCTCSB pins is approximately 66% of the delay of drivers
of the other pins.

By measuring the transmission line delay of the trace that connects the
R4000 10_Out and 10_In pins, the R4000 determines the worst case
propagation delay from an R4000 output driver to a receiving device. This
representative trace must have one and a half times the length and
approximately the same capacitive loading as the worst case trace on any
R4000 output.

D-2

MIPS R4000 Microprocessor User's Manual

Output Buffer Control Mechanism

The designer determines the trace characteristics by:

measuring the longest path from an R4000 output driver to a
receiving device, L

calculating the maximum capacitive loading on any signal pin,
C

connecting an incident-wave trace of length L with a capacitive
loading of C between the 10_In and 10_Out pins of the R4000

connecting a reflected wave trace of length L/2 to the 10_In
pin of the R4000.

An R4000 with appropriate traces connected to the IO_In and 10_Out
pins is illustrated in Figure D-1.

C

CPU Board
b
The longest trace from an
al -o—— R4000 output driver to a
receiving device
Cc
V
R4000 d
IO_Out 10_In
—f <+—"Reflected wave” trace
Length = L/2

. _?I\
Lol = :_l: “Incident Wave” Trace

L=a+b+c+d

= Total Capacitance Loading
of the worst case trace

Figure D-1 O_In/IO_Out Board Trace

MIPS R4000 Microprocessor

User's Manual D-3

Appendix D

D-4 MIPS R4000 Microprocessor User's Manual

PLL Passive Components

The Phase Locked Loop circuit requires several passive components for
proper operation, which are connected to PLLCap0, PLLCap1, VccP, and
VssP, as illustrated in Figure E-1.

In addition, the capacitors for PLLCap0 (Cp) and PLLCap1l (Cp) can be
connected to either VssP (as shown), VVccP, or one to VssP and one to
VccP. Note that C2 and the Cp capacitors are incorporated into both the
179PGA and 447PGA package designs as surface-mounted chip
capacitors.

MIPS R4000 Microprocessor User's Manual E-1

Appendix E

PLLCapl Vce ¥
R L
Cp
4{ VccP o—5 D
%1
R4000 — 2 — — C1, C3,
— — ¢ — 3 Rs and Ls
Cp are Board
Caps
I I I lVssp do— o
%2
R L
PLLCapO Vss &

Figure E-1 PLL Passive Components

E-2

MIPS R4000 Microprocessor User's Manual

PLL Passive Components

Figure E-2 shows a top view of the 179-pin package with capacitors.

@)

X: Vss-Vcc Bypass Caps
C2: VssP-VccP Bypass Caps

die %1, %2: PLL Caps

Figure E-2 179-Pin Package

Figure E-3 shows a top view of the 447-pin package with chip capacitors.
°
X: Vss-Vcc Bypass Caps
die C2: VssP-VccP Bypass Caps
%1, %2: PLL Caps

%1] [€2 |[%2]

Figure E-3 447-Pin Package

It is essential to isolate the analog power and ground for the PLL circuit
(VccP/VssP) from the regular power and ground (Vcc/Vss). Initial
evaluations have yielded good results with the following values:

R =5 ohms Cl=1nF C2=82nF

C3=10 pF Cp = 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting points for further experimentation within your
specific application. In addition, the chokes (inductors: L) can be
considered for use as an alternative to the resistors (R) for use in filtering
the power supply.

MIPS R4000 Microprocessor User's Manual E-3

Appendix E

E-4

MIPS R4000 Microprocessor User's Manual

Coprocessor 0 Hazards

The contents of the System Coprocessor registers and the TLB affect the
operation of the processor in many ways. For instance, an instruction that
changes CPO0 data also affects subsequent instructions that use the data.

In the CPU, general registers are interlocked and the result of an
instruction can generally be used by the next instruction; if the result is not
available right away, the processor stalls until it is available. CPO registers
and the TLB are not interlocked, however; there may be some delay before
a value written by one instruction is available to following instructions.

There is a required-data dependence between an instruction that changes a
register or TLB entry (a writer) and the next instruction that uses it (a user).
(A writer can write multiple data items, forming multiple writer/user
pairs.) The writer/user instruction pair places a hazard on the data if there
must be a delay between the time the writer instruction writes the data,
and the user instruction can use the data.

In addition to instructions, events can be writers and users of CP0O
information. For instance, an exception writes information to CP0
registers and events that occur for every instruction, like an instruction

MIPS R4000 Microprocessor User's Manual F-1

Appendix F

fetch, use CPO information. Therefore, when manipulating CPO contents,
the systems programmer must identify hazards and write code that avoids
these hazards.

Table F-1 describes how to identify and avoid hazards, listing instructions
and events that use CPO registers and the TLB. This table also tells when
written information is available (column 3) and when this latest
information can actually be used (column 2). Exception event writer timing
refers to the instruction identified with the exception; user event timing
information is the pipestage of each instruction during which the user
event uses the data. In the case of a hazard, the number of instructions
required between a writer and user is:

available_stage - (use_stage + 1)

To identify a hazard, look for an instruction/event writer/user pair that
has a required-data dependence and use the timing information in the
table to calculate the delay required between the writer and user. If no
delay is required, there is no hazard. If there is a hazard, place enough
instructions between the writer and user so that the written information is
available or effective when the user needs it.

NOTE: Any instructions inserted between a writer/reader pair with
a hazard must not depend on or modify the data creating the hazard
(for example NOP instructions may be used).

The following steps are used to determine a hazard delay:

1. Find the pipeline stage of the writer instruction in which the result
is available. For example, the MTCO instruction writes a CP0
general register, and the new value is available at stage 7.

2. Find the pipeline stage in which the user instruction reads or uses
the data item that the writer changes. The TLBWR instruction, for
example, uses different registers through different stages; all source
register values must be stable by stage 5 and remain unchanged
through stage 8.

3. Calculate the number of instructions that must be inserted between
the hazardous pair, by using this formula: available_stage -
(use_stage + 1). For example, with an MTCO/TLBWR pair, MTCO
data is available at stage 7, and TLBWR data must be stable by
stage 5 so the computation is: 7-(5+ 1) = 1. This means 1
instruction must be inserted between the MTCO and TLBWR. If the
result of the computation is less than or equal to zero, there is no
hazard and no instructions are required between the pair.

F-2

MIPS R4000 Microprocessor User's Manual

Coprocessor 0 Hazards

Table F-1 R4000 Coprocessor 0 Data Writer and User Timing

Instruction or Event

CPO0 Data Used, Stage Used

CPO0 Data Written, Stage Available

MTCO /7 DMTCO CPR[O,rd] |)
MFCO0 /7 DMFCO0 CPR[0,rd] 4By
TLBR Index, TLB 5-7 Eigfy“{'_igf;?:;{':i’ 8
Index or Random,
itSwIR PageMask, EntryHi, 5-8 TLB 8
EntryLo0, EntryLol
TLBP PageMask, EntryHi 3-6 Index 7
EPC or ErrorEPC, TLB 4 Status[EXL, ERL] 4-8a
ERET -
Status 3 LLbit 7
Index Load Tag TaglLo, TagHi, ECC 8pe
Index Store Tag TaglLo, TagHi, ECC 8¢
CACHE Hit ops Status[CH] 8¢
CACHE ops cache line (see note) € cache line (see note) €
EntryHi.ASID
Status[KSU, EXL, ERL, RE], | 4
Load/Store Config[KO0, DB], TLB
Config[SB] 7
WatchHi, WatchLo 4-5
. EPC, Status, Cause,
Load/Store exception BadVaddr, Context, XContext 8
. EPC, Status 8
Instrutftlon fetch Cause, BadVAddr, Context
exception ' ' "4
XContext
EntryHi[ASID],
Status[KSU, EXL, ERL, RE], | Oa
Instruction fetch Config[KaO, 18]
Config.SB 3
TLB (mapped addresses) 2
Coproc. usable test Status[CU, KSU, EXL, ERL] | 2
Interrupt signals Cause[IP], 3
sampled Status[IM, IE, EXL, ERL]
TLB shutdown Status.TS | 7

EntryHi.ASID refers to the ASID field of the EntryHi register.
Config[KO0, DB] refers to the KO and DB fields of the Config register.

o The EXL and ERL bits in the Status register are permanently
cleared in stage 8, if no exceptions abort the ERET. However the
effect of clearing them is visible to an instruction fetch starting in
stage 4, so the “returned to” instructions use the modified values in
the Status register.

MIPS R4000 Microprocessor User's Manual

Appendix F

B Only one instruction is needed to separate Index Load Tag and
MFCO0 Tag, even though table timing indicates otherwise.

y An MTCO of a CPR must not be immediately followed by MFCO of
the same CPR.

0 With an MTCO to Status that modifies KSU and sets EXL or ERL, it
is possible for the five instructions following the MTCO to be
executed incorrectly in the new mode, and not correctly in the
kernel mode. This can be avoided by setting EXL first, and only
later changing the value of KSU.

€ There must be two non-load, non-CACHE instructions between a
store and a CACHE instruction directed to the same primary cache
line as the store.

Table F-2 lists some hazard conditions, and the number of instructions that
must come between the writer and the user. The table shows the data item
that creates the hazard, and the calculation for the required number of
intervening instructions.

Table F-2 CPO0 Hazards and Calculated Delay Times.

. Instruction .

Writer - User Hazard On structions Calculation
Between

$tgwlR/ — TLBP TLB entry 3 8-(4+1)

TLBWR/ load/store using new TLB

TLEWI = entry TLB entry 3 8-(4+1)

TLBWR/ I-fetch using new TLB

TLBWI = entry TLB entry 5 8-(2+1)

MTCO Coprocessor instruction

Status[CU] ~ needs CU set Status[CU] 4 -(2+1)

TLBR — MFCO EntryHi EntryHi 3 8-(4+1)

MTCO EntryLo0 — TLBWR/TLBWI EntryLo0O 1 7-(5+1)

TLBP — MFCO Index Index 2 7-(4+1)

MTCO EntryHi — TLBP EntryHi 1 7-(5+1)

MTCO EPC — ERET EPC 2 7-(4+1)

MTCO Status — ERET Status 3 7-(3+1)

2:;-52[“5] — instruction interrupted’ Status[IE] 3 7-(3+1)

t. You cannot depend on a delay in effect if the instruction execution order is changed by exceptions.
In this case, for example, the minimum delay for IE to be effective is the maximum delay before a
pending, enabled interrupt can occur.

F-4

MIPS R4000 Microprocessor User's Manual

R4000 Pinouts

This Appendix shows the pinouts for the three microprocessor
configurations: R4000PC, R4000SC, and R4000MC.

NOTE: This entire Appendix, Appendix G, is new for the
second edition.

MIPS R4000 Microprocessor User's Manual

G-1

Appendix G

G.1 Pinout of R4000PC

Figure G-1 shows the physical pinout of the R4000PC. Table G-1 lists
the signal-to-pin correspondence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

z =z v ®wm 4 c <
Z z v 1 4 c <

-
.
.
.
.
.
.

-

R4000 PC Pinout

X

« X
« X

Bottom

> @™ O O m T O I
> ® O O m MM ® I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Figure G-1 R4000PC Physical Pinout

G-2 MIPS R4000 Microprocessor User's Manual

R4000 Pinouts

Table G-1 Signal-to-Pin Correspondences for the R4000PC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
ColdReset* T14 ExtRqst* U2 Fault* B16
NC u10 Vce T9 10In T13
100ut ui12 Int*0 N2 Int*1 L3
Int*2 K3 Int*3 J3 Int*4 H3
Int*5 F2 JTCK H17 JTDI G16
JTDO F16 JTMS E16 MasterClock J17
MasterOut P17 ModeClock B4 Modeln U4
NMI* u7 PLLCap0 **xxT PLLCapl ** T
RClock0 T17 RClockl R16 RdRdy* T5
Release* V5 Reset* ul16 Syncin J16
SyncOut P16 SysADO J2 SysAD1 G2
SysAD2 El SysAD3 E3 SysAD4 C2
SysAD5 C4 SysADG6 B5 SysAD7 B6
SysADS8 B9 SysAD9 B11 SysAD10 Ci12
SysAD11 B14 SysAD12 B15 SysAD13 C16
SysAD14 D17 SysAD15 E18 SysAD16 K2
SysAD17 M2 SysAD18 P1 SysAD19 P3
SysAD20 T2 SysAD21 T4 SysAD22 uUs
SysAD23 U6 SysAD24 U9 SysAD25 ull
SysAD26 T12 SysAD27 ul4 SysAD28 ui15
SysAD29 T16 SysAD30 R17 SysAD31 M16
SysAD32 H2 SysAD33 G3 SysAD34 F3
SysAD35 D2 SysAD36 C3 SysAD37 B3
SysAD38 C6 SysAD39 Cc7 SysAD40 C10
SysAD41 Cl1 SysAD42 B13 SysAD43 Al5
SysAD44 Ci15 SysAD45 B17 SysAD46 E17
SysAD47 F17 SysAD48 L2 SysAD49 M3
SysAD50 N3 SysAD51 R2 SysAD52 T3
SysAD53 U3 SysAD54 T6 SysAD55 T7
SysAD56 T10 SysAD57 T11 SysAD58 uU13
SysAD59 V15 SysAD60 T15 SysAD61 ul7
SysAD62 N16 SysAD63 N17 SysADCO Cs8

t. This node has capacitors for the PLL premounted to the package.

MIPS R4000 Microprocessor User's Manual G-3

Appendix G

Table G-1 (cont.)

Signal-to-Pin Correspondences for the R4000PC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
SysADC1 G17 SysADC2 T8 SysADC3 L16
SysADC4 B8 SysADC5 H16 SysADC6 us
SysADC7 L17 SysCmd0 E2 SysCmd1 D3
SysCmd?2 B2 SysCmd3 A5 SysCmd4 B7
SysCmd5 C9 SysCmd6é B10 SysCmd7 B12
SysCmd8 C13 SysCmdP Cl4 TClock0 C17
TClockl D16 VCCOk M17 Validln* P2
ValidOut* R3 WrRdy* C5 VccP K17
VssP K16 Vce A2 Vce A4
Vce A7 Vce A9 Vce All
Vce Al3 Vce Al6 Vce B18
Vce C1 Vce D18 Vce F1
Vce G18 Vcce H1 Vce J18
Vce K1 Vce L18 Vce M1
Vce N18 Vce R1 Vce T18
Vce Ul Vcce V3 Vce V6
Vce V8 Vce V10 Vce V12
Vce V14 Vce V17 Vss A3
Vss A6 Vss A8 Vss Al0
Vss Al2 Vss Al4 Vss Al7
Vss Al8 Vss Bl Vss C18
Vss D1 Vss F18 Vss Gl
Vss H18 Vss J1 Vss K18
Vss L1 Vss M18 Vss N1
Vss P18 Vss R18 Vss T1
Vss ui8 Vss V1 Vss V2
Vss V4 Vss V7 Vss V9
Vss V11 Vss V13 Vss V16
Vss V18

G-4 MIPS R4000 Microprocessor User's Manual

R4000 Pinouts

G.2 Pinout of R4000MC/SC Package Pinout

Figure G-2 shows the physical pinout of the R4000MC and SC. Table
G-2 lists the signal-to-pin correspondence.
AW AU AR AN AL AJ AG AE AC AA W U_R _ N L J G _E_C_A
AV AT AP AM AK AH AF AD AB Y V T P M K H F D B
39 . o o o o o o o o o o o o o o o o o o « 39
38 38
37 . o o o o o o o o o o o o o o o o o o . 37
36 36
35 o o o o o o o o o o o o o o o o o o « 35
34 34
33 o o o o o o o o o o o o o o o o o o . 33
32 32
31 . o o o o o o « 31
30 30
290 . o o o o o o . 29
28 28
27 . o o o o o o . 27
26 26
25 . o o o o o o . 25
24 24
23 . o o o o o o « 23
22 22
21 . o o o o o o . 21
200 . . R4000 MC/SC 447 Pinout c o =20
19 o o o o o o « 19
18 o o (bottom) e e e 18
17 17
16 16
15 o o o o o o « 15
14 14
13 . o o o o o o . 13
12 12
11 o o o o o o ¢ 11
10 10
9 . o o o o o o e 9
8 8
7 . o o o o o o o o o o o o o o o o o o .« 7
6 6
5 « 5
4 o . . 4
3 . o o o o o o o o o o o o o o o o o o « 3
2 2
1 1
AW AU _AR AN AL Al AG AE AC AA W U_R_ N L _ J G_E_C_A
AV AT AP AM AK AH AF AD AB Y V T P M K H F D B
Figure G-2 R4000MC/SC Physical Pinout
MIPS R4000 Microprocessor User's Manual G-5

Appendix G

Table G-2 Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
ColdReset* AWS37 ExtRgst* AV2 Fault* C39
NC AV24 Vce AV20 10In AV32
100ut AV28 Int*0 ALl IvdAck*T AA35
IvdErrT AA39 JTCK U39 JTDI N39
JTDO J39 JTMS G37 MasterClock AA37
MasterOut AJ39 ModeClock B8 Modeln AV8
NMI* AV16 PLLCap0 *=t PLLCapl ®F
RClock0 AM34 RClockl AL33 RdRdy* AW7
Release* AV12 Reset* AU39 SC64Addr Y2
SCAPar0 us SCAParl Ul SCAPar2 P4
SCAdd1 AL5 SCAdd2 AG1 SCAdd3 AE7
SCAdd4 AC1 SCAdd5 AC5 SCAdd6 AC3
SCAdd7 AAl SCAdd8 AB4 SCAdd9 AA5
SCAddrl0 AA7 SCAddrll AA3 SCAddr12 W3
SCAddrl3 Y6 SCAddr14 W5 SCAddrl5 W7
SCAddrl6 W1 SCAddrl7 U3 SCAddrow AN7
SCAddrOX AN5 SCAddroY AM6 SCAddr0Zz ALY
SCDCS* M6 SCDChk0 G19 SCDChk1 T34
SCDChk2 AP20 SCDChk3 AD34 SCDChk4 C19
SCDChk5 R37 SCDChk6 AU19 SCDChk7 AE37
SCDChk8 C17 SCDChk9 N37 SCDChk10 AU17
SCDChk1l AG37 SCDChk12 E19 SCDChk13 R35
SCDChk14 AR19 SCDChk15 AE35 SCData0 R3
SCDatal R7 SCData2 L5 SCData3 F8
SCData4 C9 SCDatab F12 SCDatab6 G15
SCData7 E17 SCData8 G21 SCData9 C25
SCDatal0 G25 SCDatall E29 SCDatal2 G31
SCDatal3 C35 SCDatal4 K36 SCDatal5 N35
SCDatal6 AE3 SCDatal7 AG5 SCDatal8 AK4
SCDatal9 AN9 SCData20 AU9 SCData2l AN13
SCData22 AT14 SCData23 AR17 SCData24 AT22

t. Used only in the MC part. Must be tied to Vcc for the SC part.
. This node has capacitors for the PLL premounted to the package.

MIPS R4000 Microprocessor User's Manual

R4000 Pinouts

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
SCData25 AU25 SCData26 AN27 SCData27 AR29
SCData28 AN31 SCData29 AR35 SCData30 AK36
SCData31l AG35 SCData32 T6 SCData33 L3
SCData34 L7 SCData35 E7 SCData36 G11
SCData37 E13 SCData38 E15 SCData39 G17
SCData40 Cc23 SCData4l F24 SCData42 E27
SCData43 D30 SCData44 C33 SCData45 E35
SCData46 L35 SCData47 R33 SCData48 AF4
SCData49 Al3 SCData50 A7 SCData51 AP8
SCDatab2 AT10 SCData53 AR13 SCDatab54 AR15
SCDatab5 AT18 SCDatab6 AU23 SCData57 AT26
SCDatab8 AR27 SCDatab9 AN29 SCData60 AP32
SCData61 AN35 SCData62 AJ35 SCData63 AE33
SCData64 V4 SCData65 R5 SCData66 N5
SCData67 E5 SCData68 G9 SCData69 El1
SCData70 G13 SCData71 D14 SCData72 c21
SCData73 D22 SCData74 E25 SCData75 G27
SCData76 C31 SCData77 F32 SCData78 J35
SCData79 M34 SCData80 AC7 SCData81 AE5
SCData82 AG7 SCData83 AR5 SCDatag4 AR9
SCData85 AR11 SCData86 AN15 SCData87 AP16
SCData88 AU21 SCData89 AN23 SCData90 AR25
SCData91 AP28 SCData92 AU31 SCData93 AR33
SCData%4 AL35 SCData95 AH34 SCData96 u7
SCData97 N3 SCData98 N7 SCData99 C5
SCDatal00 E9 SCDatal0l1 Cl11 SCDatal02 C13
SCDatal03 F16 SCDatal04 E21 SCDatal05 G23
SCDatal06 C27 SCDatal07 F28 SCDatal08 E31
SCDatal09 G33 SCDatall0 J37 SCDatalll N33
SCDatall2 AD6 SCDatall3 AG3 SCDatall4 Al5
SCDatall5 AUS5 SCDatall6 ANI11 SCDatall?7 AU1l
SCDatall8 AU13 SCDatall9 AN17 SCDatal20 AR21

MIPS R4000 Microprocessor User's Manual

G-7

Appendix G

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
SCDatal2l AP24 SCDatal22 AU27 SCDatal23 AT30
SCDatal24 AU33 SCDatal25 AN33 SCDatal26 AL37
SCDatal27 AG33 SCOE* N1 SCTCS* J1
SCTChkO AN21 SCTChk1 AN19 SCTChk2 AU15
SCTChk3 AP12 SCTChk4 AU7 SCTChk5 AR7
SCTChk6 AH6 SCTag0 K4 SCTagl G7
SCTag2 Cc7 SCTag3 D10 SCTag4 C15
SCTag5 D18 SCTag6 F20 SCTag7 E23
SCTag8 D26 SCTag9 C29 SCTagl0 G29
SCTagll E33 SCTag12 G35 SCTag13 L33
SCTagl4 L37 SCTag150 P36 SCTagl6 AF36
SCTagl7 AJ37 SCTag18 AJ33 SCTag19 AN37
SCTag20 AU35 SCTag21 AR31 SCTag22 AU29
SCTag23 AN25 SCTag24 AR23 SCWrw* J5
SCWrX* J7 SCWrY* H6 SCWrz* G5
StatusO U33 Statusl U35 Status2 V36
Status3 W35 Status4 W37 Status5 AC37
Status6 AC35 Status7 AC33 Syncin W39
SyncOut AN39 SysADO T2 SysAD1 M2
SysAD2 J3 SysAD3 G3 SysAD4 C1
SysAD5 A3 SysAD6 A9 SysAD7 Al13
SysADS8 A21 SysAD9 A25 SysAD10 A29
SysAD11 A33 SysAD12 B38 SysAD13 E37
SysAD14 G39 SysAD15 L39 SysAD16 AD2
SysAD17 AH2 SysAD18 AL3 SysAD19 AN3
SysAD20 AUl SysAD21 AW3 SysAD22 AW9
SysAD23 AW13 SysAD24 AW?21 SysAD25 AW?25
SysAD26 AW?29 SysAD27 AW33 SysAD28 AV38
SysAD29 AR37 SysAD30 AM38 SysAD31 AH38
SysAD32 R1 SysAD33 L1 SysAD34 H2
SysAD35 El SysAD36 C3 SysAD37 A5
SysAD38 All SysAD39 A15 SysADA40 A23
G-8 MIPS R4000 Microprocessor User's Manual

R4000 Pinouts

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
SysADA41 A27 SysADA42 A3l SysADA43 A35
SysAD44 C37 SysAD45 B39 SysADA46 H38
SysAD47 M38 SysAD48 AE1l SysAD49 All
SysAD50 AM2 SysAD51 AR1 SysAD52 AU3
SysAD53 AW5 SysAD54 AW11l SysAD55 AW15
SysAD56 AW23 SysAD57 AW27 SysAD58 AW31
SysAD59 AW35 SysADG60 AU37 SysAD61 AR39
SysAD62 AL39 SysAD63 AG39 SysADCO Al7
SysADC1 R39 SysADC?2 AW17 SysADC3 AD38
SysADC4 Al9 SysADC5 T38 SysADC6 AW19
SysADC7 AC39 SysCmdo0 Gl SysCmd1 E3
SysCmd2 B2 SysCmd3 B12 SysCmd4 B20
SysCmd5 B24 SysCmd6 B28 SysCmd7 B32
SysCmd8 A37 SysCmdP H34 TClock0 H34
TClockl J33 VCCOk AE39 ValidIn* AN1
ValidOut* AR3 WrRdy* A7 VcceSense W33
VssSense u37 VccP AA33 VssP Y34
Vce A39 Vce B6 Vce B10
Vce B18 Vcce B26 Vce B34
Vce D4 Vce D8 Vce D16
Vce D24 Vce D32 Vce D36
Vce F2 Vce F14 Vce F22
Vce F30 Vce F38 Vce H4
Vce H36 Vce K6 Vce K38
Vcce Y38 Vcce AB2 Vce AB34
Vce AD4 Vce AD36 Vce AF6
Vce AF38 Vce AK?2 Vce AK34
Vce AM4 Vce AM36 Vce AP2
Vce AP10 Vce AP18 Vce AP26
Vce AP38 Vce AT4 Vce ATS8
Vce AT16 Vce AT24 Vce AT32
Vce AT36 Vce AV6 Vce AV14

MIPS R4000 Microprocessor User's Manual G-9

Appendix G

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg R4000 PC Pkg R4000 PC Pkg
Function Pin Function Pin Function Pin
Vce AV22 Vce AV30 Vce AV34
Vce AW1 Vce AW39 Vss B4
Vss B14 Vss B22 Vss B30
Vss B36 Vss D2 Vss D6
Vss D12 Vss D20 Vss D28
Vss D34 Vss D38 Vss F4
Vss F6 Vss F10 Vss F18
Vss F26 Vss F34 Vss F36
Vss K2 Vss K34 Vss M4
Vss M36 Vss P6 Vss P38
Vss V2 Vss Y4 Vss Y36
Vss AB6 Vss AB36 Vss AB38
Vss AF2 Vss AF34 Vss AH4
Vss AH36 Vss AKG6 Vss AK38
Vss AP4 Vss APG6 Vss AP14
Vss AP22 Vss AP30 Vss AP34
Vss AP36 Vss AT2 Vss AT6
Vss AT12 Vss AT20 Vss AT28
Vss AT34 Vss AT38 Vss AV4
Vss AV10 Vss AV18 Vss AV26
Vss AV36

G-10 MIPS R4000 Microprocessor User's Manual

Index

Numerics
32-bit
addressing 109
applications 9
data format 24
instructions 36
operands, in 64-bit mode 39
operations 6, 67
single-precision FP format 164
virtual-to-physical-address
translation 65
32-bit mode
address space 31
address translation 65, 95
addresses 63
FPU operations 153
TLB entry format 81
4th Floor
B-dorm. See Alco Hall
64-bit
addressing 109
ALU 9
bus, address and data 201
data format 24
double-precision FP format 164
floating-point registers 156
FPU 9
internal data path widths 381
operations 6, 39, 67
System interface 11
virtual-to-physical-address
translation 66

64-bit mode
32-bit operands, handling of 39
address space 31
address translation 66, 95
addresses 63
FPU operations 153
TLB entry format 81

A

address acceleration 58
Address Error exception 127
address prediction 58
address space identifier (ASID) 64
address spaces

32-bit translation of 65

64-bit translation of 66

address space identifier (ASID) 64

physical 64

virtual 63

virtual-to-physical translation of 64
addressing

and data formats 24

big-endian 24

Kernel mode 73

little-endian 24

misaligned data 26

Supervisor mode 69

User mode 67

virtual address translation 95

See also address spaces
Alco Hall vs. Acid. See game, softball
application software, compatibility with

MIPS R2000, R3000, and R6000
processors 6

architecture

64-bit 9

superpipeline 11
array, page table entry (PTE) 102
ASID. See address space identifier

MIPS R4000 Microprocessor User's Manual

Index

B

Bad Virtual Address register (BadVAddr)

103

big-endian, byte addressing 24, 170
binary fixed-point format 166
bit definition of

ERL 68, 69, 73, 109

EXL 68, 69, 73, 109, 112, 119

IE 109

KSU 68, 69, 73

KX 73, 109

Sx 69, 109

UXx 68, 109
boot-mode settings 222
boundary scanning 390
Boundary-scan register 394
branch delay 48
branch instructions, CPU 15, 41
branch instructions, FPU 170
Breakpoint exception 138
Bus Error exception 134
Bypass register 393
byte addressing

big-endian 24, 170

little-endian 24, 170
byte ordering 24

big-endian 24

in doublewords 25

little-endian 24

C

cache 33
Cache Error (CacheErr) register 116
Cache Error exception 132
Cache Error exception process 120
caches
attributes
clean 255
clean exclusive 256
dirty 255
dirty exclusive 256

dirty shared 255
exclusive 255
invalid 255
shared 255
coherency
attributes 264
conflicts 271-285
maintaining coherency on load
and store operations 269
protocol, overview 264
synchronization 286
description 246
line ownership 258
manipulation by an external agent 270
mapping states between caches 257
memory hierarchy 32, 244
misses
address prediction 58
handling 49
performance considerations 58
pipeline back-up 54
on-chip instruction and data caches 33
on-chip primary caches 33, 246
operation modes 266
optional external secondary cache 32
ordering constraints 267
overview of operations 245
primary cache, states 256
primary data cache
accessing 251
line size 250
primary instruction cache
accessing 251
line size 249
secondary cache
accessing 254
line size 252
organization 252
states 256

MIPS R4000 Microprocessor User's Manual

Index

Secondary Cache interface 33, 379
See also Secondary Cache interface
secondary cache sizes 248
state diagrams 260
strong ordering
example of 267
testing for 267
terminology 243
write-back policy 259
Cause register 110
central processing unit (CPU)
cache memory hierarchy 32
data formats and addressing 24
exception processing 99
See also exception processing, CPU
features 6—33
instruction formats 14, 36
instruction pipeline, basic operation

See also pipeline, CPU
instruction set

extensions 16

overview 14, 35

types of instructions 15
instructions. See instructions, CPU
interrupts 401

See also interrupts, CPU
memory management 31

See also memory management
memory organization 244
operating modes 32
registers 12

See also registers, CPU
System Control Coprocessor (CP0)

27,80
See also System Control
Coprocessor

System interface 293

See also System interface
transfers between FPU and CPU 169

CISC. See complex instruction set
computer

ckseg0 79
cksegl 79
ckseg3 79
cksseg 79
Class of '73. See 4th Floor
B-dorm
clean exclusive, cache attribute 256
clean, cache attribute 255
Clock interface
connecting clocks
to CMOS logic system 238
to gate-array device 235
to phase-locked system 234
to system without phase locking
235
signals 203, 227
status outputs 241
system timing parameters 233
clocks, system 229
coherency. See caches, coherency
cold reset 214
compare instructions, FPU 171
Compare register 104
compatibility
application software, with MIPS
R2000, R3000, and R6000
processors 6
DEC VAX 24
iAPX x86 24
IBM 370 24
MC68000 24
compilers, MIPS suite of 5
complex instruction set computer (CISC)
compared with RISC, in languages
used 4
historical context 1—2
computational instructions, CPU 15
64-bit operations 39
cycle timing for multiply and divide
instructions 40
formats 39

MIPS R4000 Microprocessor User's Manual

Index

computational instructions, FPU
floating-point 170

Config register 90

Context register 102

Control/Status register, FPU 157, 159

conversion instructions, FPU 170
coprocessor instructions 15, 42

Coprocessor Unusable exception 140

correctness considerations 58

Count register 103

CPO. See System Control Coprocessor

CPU. See central processing unit

csseg 72

cycle time, interlock and exception
handling 53

D

data alignment 170
Data Fetch, First Half (DF) 46
Data Fetch, Second Half (DS) 46
data formats
and addressing 24
byte ordering 24
data identifiers 364
data transmission errors, ECC
detecting 418
types of
double data bit 422
four data bit 424
single check bit 421
single data bit 420
three data bit 423
DEC VAX, compatibility with 24
delayed load instruction 37
design cycles, RISC vs. CISC 3
dirty exclusive, cache attribute 256
dirty shared, cache attribute 255
dirty, cache attribute 255
divide registers, CPU 13
Division-by-Zero exception 194
doublewords, byte ordering in 25

E

EntryHi register 81, 89
EntryLo register 87
EntryLoO register 81, 87
EntryLol register 81, 87
ERL bit 68, 69, 73, 109
Error Checking and Correcting (ECC)
mechanism
check bit assignments 414
data transmission errors
detecting 418
four data bit 424
parity check matrix 425
single check bit 421
single data bit 420
three data bit 423
operation 408, 412
parity error checking 408
R4400 Fault* signal 414
SECDED
check matrices 414
overview 409
Error Checking and Correcting (ECC)
register 115
Error Exception Program Counter
(ErrorEPC) register 118
exception instructions, CPU 15, 42
exception processing, CPU
conditions 52
effect on pipeline 53
exception handler flowcharts 144
exception types
Address Error 127
Breakpoint 138
Bus Error 134
Cache Error 132

Cache Error exception process 120

Coprocessor Unusable 140
Floating-Point 141

general exception process 121
Integer Overflow 135

MIPS R4000 Microprocessor User's Manual

Index

exception types (cont.)
Interrupt 143
Nonmaskable Interrupt (NMI)
exception process 121
overview 119
Reserved Instruction 139
Reset 124
Reset exception process 120
Soft Reset 125
Soft Reset exception process 121
System Call 137
TLB 128
Trap 136
Virtual Coherency 133
Watch 142
exception vector location
Reset 122
Illegal Instruction (11) 49
overview 100
pipelining 56
priority of 123
exception processing, FPU
exception types
Division by Zero 194
Inexact 192
Invalid Operation 193
Overflow 194
overview 188
Underflow 195
Unimplemented Instruction 196
flags 190
saving and restoring state 197
trap handlers 198
Exception Program Counter (EPC) register
100, 112
exclusive, cache attribute 255
Execution (EX) 46
EXL bit 68, 69, 73, 109, 112, 119
extensions, to instruction set architecture
16
external stalls, conditions 53

F

faults, CPU
handling 49
features
central processing unit 6—33
Floating-Point Unit (FPU) 30, 153
R4000 configurations 7
Floating-Point exception 141
Floating-Point General-Purpose registers
(FGRs) 154
Floating-Point registers (FPRs) 156
Floating-Point Unit (FPU)
designated as CP1 30, 152
exception types 188
See also exception processing, FPU,
exception types
features 30, 153
formats
binary fixed-point 166
floating-point 164
instruction execution cycle time 173
instruction pipeline 172
See also pipeline, FPU
instruction set, overview 167
overview 152
programming model 154
transfers between FPU and CPU 169
transfers between FPU and memory
169
FPU. See Floating-Point Unit

G

game, softball. See yellow_slugs
general exception

handler 145

process 121

servicing guidelines 146

MIPS R4000 Microprocessor User's Manual

Index

H

hardware
interlocks 169
interrupts 402

hazards, System Control Coprocessor F-1

iIAPX x86, compatibility with 24
IBM 370, compatibility with 24
IDEC. See instruction decoder
IE bit 109
Illegal Instruction (I1) exception 49
Implementation/Revision register, FPU
157-158
Index register 85
Initialization interface
boot-mode settings 222
cold reset 214, 217
initialization sequence 218
power-on reset 214, 216
reset signal description 215
signals 208, 213
warm reset 208, 214, 217
initialization sequence, system 218
instruction decoder (IDEC), CPU 45
instruction decoding, CPU 14
Instruction Fetch, First Half (IF) 45
Instruction Fetch, Second Half (IS) 45
instruction formats, CPU
types of 14, 36
See also instructions, CPU
Instruction register 392
instruction set architecture (ISA)
extensions to 16
overview 14
instruction set, CPU
extensions 16
overview 14, 35
types of instructions 15
See also instructions, CPU
instruction set, FPU 167

instruction translation lookaside buffer
(ITLB) 45
instructions, CPU
branch 15, 41
common to MIPS R-Series processors
16-23
computational 15
64-bit operations 39
cycle timing for multiply and
divide instructions 40
formats 39
coprocessor 15, 42
exception 15, 42
extensions to CPU instruction set 16
instruction decoder (IDEC) 45
instruction translation lookaside buffer
(ITLB) 45
joint translation lookaside buffer
(TLB) 31
jump 15, 41
load
defining access types 37
delayed load instruction 37
overview 15
scheduling a load delay slot 37
No Operation (NOP) 59
register-to-register 47
special 15, 42
store
defining access types 37
overview 15
System Control Coprocessor (CP0) 15
translation lookaside buffer (TLB) 97
instructions, FPU
branch 170
compare 171
computational 170
conversion 170
latency 181
load 169
move 169
pipeline stage sequences 181

MIPS R4000 Microprocessor User's Manual

Index

instructions, FPU (cont.)
repeat rate 181
scheduling 175
scheduling restraints 176
store 169
Integer Overflow exception 135
interfaces. See Clock interface; Initialization
interface; Interruptinterface; JTAG
interface; Secondary Cache
interface; System interface
interlocks, CPU
aborting instructions subsequent to 55
effect on pipeline 53
external stalls 53
handling 49, 56
pipelining 56
types of 49
interlocks, hardware 169
Interrupt exception 143
Interrupt interface, signals 207
Interrupt register 402—405
interrupts, CPU
accessing 402
handling 49
hardware 402
Nonmaskable Interrupt (NMI) 402
Invalid Operation exception 193
invalid, cache attribute 255
ISA. See instruction set architecture
ITLB. See instruction translation lookaside
buffer

J

Joint Test Action Group (JTAG) interface
boundary scanning, explanation of
390
operation 400
registers
Boundary-scan 394
Bypass 393
Instruction 392

signals 207, 391
Test Access Port (TAP) 395
joint translation lookaside buffer JTLB) 31
JTLB. See joint translation lookaside buffer
(JTLB)
jump instructions, CPU 15, 41

K

Kernel mode
and exception processing 100
ckseg0 79
cksegl 79
ckseg3 79
cksseg 79
kseg0 75
ksegl 76
kseg3 76
ksseg 76
kuseg 75
operations 73
xkphys 78
xkseg 79
xksseg 78
xkuseg 77

kseg0 75

ksegl 76

kseg3 76

ksseg 76

KSU bit 68, 69, 73

kuseg 75

KX bit 73, 109

L

language suite approach, benefits of 5
latency
determining 363
external read response 363
external response 361, 363
fault detection 435
FPU instruction 181
FPU operation 173

MIPS R4000 Microprocessor User's Manual

Index

latency (cont.)
intervention response 363
release 361, 362
snoop response 363
line ownership, cache 258
line size
primary data cache 250
primary instruction cache 249
secondary cache 252
little-endian, byte addressing 24, 170
load delay 48, 169
load delay slot 37
load instructions, CPU
defining access types 37
delayed load instruction 37
overview 15
scheduling a load delay slot 37
load instructions, FPU 169
Load Linked Address (LLAddr) register
93

M

Master/Checker mode, of R4400 430
MC68000, compatibility with 24
memory management
address spaces 63
addressing 31
memory management unit (MMU) 61
register numbers 84
registers. See registers, CPU, memory
management
System Control Coprocessor (CP0) 80
memory organization, hierarchy 244
MIPS RISCompilers, language suite 5
MIPS R-Series processors, instructions
common to 16—-23
move instructions, FPU 169
multiply registers, CPU 13

N

No Operation (NOP) instructions 59
Nonmaskable Interrupt (NMI) 402
Nonmaskable Interrupt (NMI) exception
handling 150
process 121

@)

on-chip primary caches 33, 246
operating modes 32

Kernel mode 73

Supervisor mode 69

User mode 67
Overflow exception 194

P

page table entry (PTE) array 102
PageMask register 81, 87
parameters, system timing 233
parity check matrix 425
parity error checking 408
performance

address acceleration 58

address prediction 58

of uncached stores 59
physical address space 64
pipeline, CPU

back-up 54

branch delay 48

correctness considerations 58

decision whether to advance 57

exception conditions 52

external stalls 53

load delay 48

operation 44

overrun 53

performance considerations 58

slip conditions 53

MIPS R4000 Microprocessor User's Manual

Index

pipeline, CPU (cont.)
stages
Data Fetch, First Half (DF) 46
Data Fetch, Second Half (DS) 46
Execution (EX) 46
Instruction Fetch, First Half (IF) 45
Instruction Fetch, Second Half (IS)
45
Register Fetch (RF) 45
Tag Check (TC) 46
Write Back (WB) 47
stall conditions 53
pipeline, FPU
cycle time 173
overlapping 175
overview 172
resource scheduling rules 182
stage sequences 181
Porter, née College 5. See Class of '73
power-on reset 214, 216
primary caches. See caches
Processor Revision Identifier (PRId)
register 89

R

R4400
cache error bit 7
cache sizes 6
clock ratio 91
DC bit, setting primary D-cache size
92

divide-by-6 clock 91, 223

divide-by-8 clock 91, 223

EC bit 91

ECC Fault* signal 414

enhancements over R4000 7

EW bit 117

fault detection latency 435

IC bit, setting primary I-cache size 92

Master/Checker boot-mode bits
223,225

Master/Checker mode 7, 430
Master/Checker mode configurations
430
Master/Checker mode reset operation
436
primary cache size 33
Status signals 7, 241
system clock ratio, boot-mode bits 223
uncached loads 326
uncached store buffer 7, 59, 326
Random register 86
reduced instruction set computer (RISC)
compared with CISC, in languages
used 4
design, benefits of 2
developments in recent years 2
historical context 1—2
optimizing compilers 4
Register Fetch (RF) 45
registers, CPU
exception processing
Bad Virtual Address (BadVAddr)
103
Cache Error (CacheErr) 116
Cause 110
Compare 104
Config 90
Context 102
Count 103
Error Checking and Correcting
(ECC) 115
Error Exception Program Counter
(ErrorEPC) 118
Exception Program Counter (EPC)
112
Load Linked Address (LLAddr)
93
Processor Revision Identifier
(PRId) 89
register numbers 101
Status 105
TagHi 93

MIPS R4000 Microprocessor User's Manual

Index

registers, CPU (cont.)
exception processing (cont.)
TagLo 93
WatchHi 113
WatchLo 113
XContext 114
Exception Program Counter (EPC) 100
Interrupt 402—405
memory management
EntryHi 81, 89
EntryLo 87
EntryLo0 81, 87
EntryLol 81, 87
Index 85
PageMask 81, 87
Random 86
register numbers (CP0) 80
Wired 86, 88
overview 12
register-to-register instructions 47
System Control Coprocessor (CP0)
80-97
registers, FPU
Control/Status 157, 159
Floating-Point (FPRs) 156
Floating-Point General-Purpose
(FGRs) 154
Implementation/Revision 157-158
registers, JTAG interface
Boundary-scan 394
Bypass 393
Instruction 392
Request 336
requests. See System interface
Reserved Instruction exception 139
Reset exception
handling 150
overview 124
process 120

resets
cold 214, 217
power-on 214, 216
warm 208, 214, 217

S

SCDChk bus 381

SCTAG bus 381

SECDED
check matrices 414
overview 409

Secondary Cache interface
accessing a split secondary cache 381
data transfer rates 380
duplicating signals 380
operation of 382
overview 33
read cycles 383
SCDChk bus fields 381
SCTAG bus fields 381
signals 205
write cycles 385

secondary caches. See caches

sequential ordering 378

shared, cache attribute 255

signals
Clock interface 203, 227
descriptions 199
Initialization interface 208, 213
Interrupt interface 207
JTAG interface 207, 391
request cycle control signals 298
Secondary Cache interface 205
summary 209
system clocks 229
System interface 201

slips, conditions 53

slugs, banana. See UCSC

1-10

MIPS R4000 Microprocessor User's Manual

Index

Soft Reset exception
handling 150
overview 125
process 121
special instructions, CPU 15, 42
sseg 71
stalls
conditions 53
external 53
status outputs, processor 241
Status register
access states 109
format 105
operating modes 109
store instructions, CPU
defining access types 37
overview 15
store instructions, FPU 169
strong ordering
example of 267
testing for 267
subblock ordering 378
superpipeline architecture
execution rate 6
Supervisor mode
csseg 72
operations 69
sseg 71
suseg 71
xsseg 72
xsuseg 72
suseg 71
SX bit 69, 109
System Call exception 137
System Control Coprocessor (CP0)
hazards F-1
instructions 15
register numbers 80

registers
overview 27
used in exception processing 101
used in memory management
80-97
System interface
addressing conventions 377
buses 295
commands
external validate requests 370
intervention requests 372
null requests 369
overview 364
read requests 366
snoop requests 372
syntax 364
update requests 370
write requests 367
cycle time
cluster request spacing 361
external response latency 363
release latency 362
data identifiers
overview 364
data identifiers, syntax 364, 374
data rate control
data transfer patterns 356
independent transmissions on
SysAD bus 359
secondary cache transfers 357
secondary cache write cycle time
358
description 293—-294
endianness 360

MIPS R4000 Microprocessor User's Manual

1-11

Index

System interface (cont.)

external request protocols
arbitration request 342
intervention request 349
invalidate request 348
null request 344
overview 329, 341
read request 343
snoop request 352
update request 348
write request 347

external requests
intervention request 317
invalidate request 316
null request 344
overview 313-315
read request 316
read response request 317
snoop request 317
update request 316
write request 316

handling requests
CACHE operations 327
Load Linked Store Conditional

operation 327

load miss 318—320
store hit 326
store miss 321-325
uncached loads or stores 326

issue cycles 296

master state 299

overview 11

processor internal address map 378

processor request protocols
cluster 337
cluster flow control 338
invalidate request 335
null write request 336
overview 329
read request 330
update request 335
write request 333

processor requests
cluster 311
invalidate request 308
null write request 336
overview 304-305
read request 306
update request 310
write request 307
protocols 299
request
control signals 298
overview 302
rules 303
sequential ordering 378
signals 201
slave state 299
subblock ordering 378
timing requirements 60

T

Tag Check (TC) 46
TagHi register 93
TagLo register 93
Test Access Port (TAP)
controller 396
controller reset 396
controller states 396
overview 395
timing requirements, pipeline 60
TLB invalid exception 130
TLB modified exception 131
TLB refill exception 129
TLB. See translation lookaside buffer
TLB/XTLB miss exception handler 147
TLB/XTLB refill exception servicing
guidelines 148
translation lookaside buffer (TLB)
and memory management 61
and virtual memory 62
coherency attributes 78
entry formats 81

1-12

MIPS R4000 Microprocessor User's Manual

Index

translation lookaside buffer (TLB) (cont.)

exceptions 128

instructions 97

misses 97, 102, 144

page attributes 78

pipeline stages 46

virtual memory mapping 31
translation, virtual to physical

32-bit 65

64-bit 66
Trap exception 136

U

UCSC. See Porter, née College 5
uncached store buffer 59
Underflow exception 195

Unimplemented Instruction exception 196

useg 67, 69

User mode
operations 67
useg 69

xuseg 69
UX bit 68, 109

\Y

virtual address space 63
Virtual Coherency exception 133
virtual memory

and the TLB 62

hits and misses 62

mapping 31

multiple matches 62

virtual address translation 95

W

warm reset 208, 214, 217
Watch exception 142
WatchHi register 113
WatchLo register 113
Wired register 86, 88
Write Back (WB) 47

X

XContext register 114
xkphys 78

xkseg 79

xksseg 78

xkuseg 77

xsseqg 72

xsuseg 72

xuseg 67, 69

Y
yellow_slugs. See slugs, banana

MIPS R4000 Microprocessor User's Manual

1-13

Index

1-14 MIPS R4000 Microprocessor User's Manual

